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Abstract

Since publication of Environmental Health 2011, 10(Suppl 1):S12 [1] it has been noticed that titles and captions for the
figures and tables were incorrectly applied. In this full-length correction article, figures and tables have been renumbered
with legends and captions applied appropriately. Some minor typographical errors have also been corrected. The
inconvenience caused to readers by premature publication of the original paper is regretted.
The transformation of a normal cell into a cancer cell takes place through a sequence of a small number of
discrete genetic events, somatic mutations: thus, cancer can be regarded properly as a genetic disease of somatic
cells. The analogy between evolution of organisms and evolution of cell populations is compelling: in both cases
what drives change is mutation, but it is Darwinian selection that enables clones that have a growth advantage to
expand, thus providing a larger target size for the next mutation to hit. The search for molecular lesions in tumors
has taken on a new dimension thanks to two powerful technologies: the micro-arrays for quantitative analysis of
global gene expresssion (the transcriptome); and ‘deep’ sequencing for the global analysis of the entire genome (or
at least the exome). The former offers the most complete phenotypic characterization of a tumor we could ever
hope for – we could call this the ultimate phenotype; the latter can identify all the somatic mutations in an
individual tumor – we could call this the somatic genotype. However, there is definitely the risk that while we are
‘drowned by data, we remain thirsty for knowledge’. If we want to heed the teachings of Lorenzo Tomatis, I think
the message is clear: we ought to take advantage of the new powerful technologies – not by becoming their
slaves, but remaining their masters. Identifying somatic mutations in a tumor is important because through a
deeper understanding of the nature of that particular tumor it can help us to optimize therapy or to design new
therapeutic approaches.

Introduction
Lorenzo Tomatis was a towering figure in the study of
cancer and cancer epidemiology: not just because from
1982 to 1993 he was the Director of the International
Agency for Research against Cancer (IARC), but even
more because he commanded immense international
respect as a scientist ahead of his time in the under-
standing of the environmental causes of cancer. Toma-
tis’ major influence in this area spanned some four
decades [2,3] (see Figs. 1a and 1b). I never worked with
Renzo, but I have vivid memories of many encounters
and discussions I had with him, both about science and

about research policies: and I am forever grateful for
what I learnt from him.
My job today is to discuss the role of somatic muta-

tions in oncogenesis. In a nutshell, and using a time-
honoured terminology of medicine, if heredity and
environment are the aetiology of cancer, somatic muta-
tions are the essence of its pathogenesis. With respect
to heredity, it is abundantly clear that one never does
inherit cancer, but rather one may inherit an increased
risk of cancer [4]. In first approximation, some mutant
genes entail a very high risk of cancer, so much so that
they behave as Mendelian dominants (see Fig. 2), and
they are therefore called high penetrance (cancer sus-
ceptibility) genes. These include (i) tumor suppressors
(e.g. p53, APC, GPC3, VHL, CDKN2A, MEN1), (ii)

Correspondence: lucio.luzzatto@ittumori.it
Scientific Director, Istituto Toscano Tumori, Florence, Italy

Luzzatto Environmental Health 2011, 10(Suppl 1):S16
http://www.ehjournal.net/content/10/S1/S16

© 2011 Luzzatto; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:lucio.luzzatto@ittumori.it
http://creativecommons.org/licenses/by/2.0


oncogenes (e.g. PDGFRA, KIT, MET, RET), and (iii)
genes required for genome stability (e.g. ATM, BLM,
FANCA, BRCA2, MSH2, XPA). Known high penetrance
genes number by now several dozens [5]: they may have
tumor (site) specificity (e.g. BRCA2) or they may not
(e.g. p53). In addition, numerous clinical observations
(see for instance Fig. 3 [6]) indicate that cancer suscept-
ibility may ‘run in families’ in a more subtle way, and
this has led to the notion of low penetrance (cancer sus-
ceptibility) genes [7]. These are important because they
may contribute significantly to the cancer burden in a
population (see Table 1). Until recently, candidate low
penetrance genes have been chased through (i) tests on
first degree relatives [8], (ii) kinship analysis [9], (iii) stu-
dies on twins [10], and (iv) linkage disequilibrium analy-
sis in appropriate populations [11-13] It must be
admitted that until recently the yield has been limited,
although individual examples have turned up, for

instance among genes involved in signal transduction
pathways (e.g. the TGFb receptor: see Fig. 4), and
numerous genes involved in DNA repair (Table 2). Over
the past 4 years, however, genome-wide association stu-
dies (GWAS) have become very popular: this is not a
conceptually new approach, as it is merely an updated
version of (iv), but it is made much more powerful
through the availability of some millions single nucleo-
tide polymorphisms (SNPs). Thanks to this increased
power, many low penetrance genes or loci have been
now identified, that affect the risk of individual types (or
several types) of cancer – mostly by less than +/- 30% –
in one or another population (see 40 references in
webappendix of recent paper by Hartman et al.[14] .
With respect to the environment, I think the most

lasting monumental memorial to Lorenzo is the series
of IARC publications on carcinogenic agents which, in
the jargon of the cognoscentes, are known simply as The
Monographs. Rarely has an international agency been
able to generate publications (each one the product of a
collegial effort) with so much scientific content; even
more rarely has this taken place consistently in dozens
of volumes over some thirty years, to the extent that the
Monographs are universally regarded as the ultimate
authority on their individual topics; and probably never
has a single person – namely Tomatis himself – through
his scientific rigor, his incredible dedication, and his
unique ability to catalyze consensus whenever possible,
contributed so much to a successful venture of this
nature.
The model of oncogenesis pioneered by John Cairns

[15] contained already the key for reconciling aetiology
and pathogenesis. The transformation of a normal cell
into a cancer cell takes place through a sequence of a
small number of discrete genetic events, somatic muta-
tions (Figure 5): thus, cancer can be regarded properly
as a genetic disease of somatic cells [4,16]. The analogy
between evolution of organisms and evolution of cell
populations is compelling (Table 3): in both cases what
drives change is mutation, but it is Darwinian selection
that enables clones that have a growth advantage to
expand, thus providing a larger target size for the next
mutation to hit [15,17,18] (Figure 5). This model offers
a simple interpretation to the mechanism of action of
the aetiological factors we have mentioned. An environ-
mental agent can increase the rate of somatic mutation
(i.e., it may be mutagenic, like ionizing radiation), or it
can increase the rate of cell proliferation (as when Heli-
cobacter pylori causes gastritis), or it may do both things
(this is probably the case with the hepatitis B virus caus-
ing hepatoma). As for heredity, in the majority of cases
it acts probably by increasing the mutation rate, and
this may apply to both high penetrance genes and to
low penetrance genes; on the other hand, sometimes an

Trabecular carcinoma of the liverEndothelial sarcoma of the liver

Fig 1a
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Figure 1 Headings of one of the first and one of the last
publications by Lorenzo Tomatis.
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Figure 2 Pedigree of a family with a high rate of breast cancer and ovarian cancer: the increased tendency to developing cancer shows a
Mendelian autosomal dominant pattern of inheritance, suggesting that a single gene is largely responsible.

Figure 3 In this extended family there were 3 cases of hairy cell leukaemia (HCL): their co-existence can be hardly a coincidence, since
HCL is one of the rarest forms of B cell leukaemia. Here the pattern is not Mendelian, suggesting that several genes and/or environmental
factors are involved (from ref. [6]).
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oncogene with a germ-line mutation appears to be in
lieu of the first somatic mutation, for instance in the
case of RET in Multiple Endocrine Neoplasia type 2,
thus decreasing by one the number of mutations
required for the development of cancer (see Figure 6).
In order to understand the pathogenesis of tumors we

must consider their very extensive variety: not only can
they arise in virtually every possible cell type in the
body, but even within the set of tumors arising from a
specific type of cell there is marked heterogeneity, some
of it well explored and some yet to be unravelled. The
somatic mutation-Darwinian selection model of cancer
is appropriately versatile: we can presume, and we know
in specific cases that different genes are involved: some
400 have been already identified [19]. To this end, the
methodology that has given the highest returns has been
cytogenetic analysis, which has spotted (i) chromosomal
translocations harbouring fusion genes or rearrange-
ments that dysregulate gene expression, as well as (ii)

loss of heterozigosity betraying deletions. In other cases
somatic mutations have been discovered in genes
already known to have germ-line mutations in cancer-
prone families, or by deliberately testing for somatic
mutations in candidate genes. Not surprisingly, many of
the genes involved belong to sets that are relevant to
broad functions within the cell (the buzz-term today is
gene ontology): particularly the cell cycle, signalling,

Table 1 Two types of cancer genes

“Strong” “Weak”

Penetrance High Low

Population frequency Low May be high

Detectable by linkage analysis Yes No

Detectable by LD analysis Difficult Possible

Examples Rb, BRCA1 MDM2, TGFRB

Overall contribution to cancer prevalence Low Could be high

Figure 4 Meta-analysis of the quantitative effect of a polymorphic allele of the TGF b receptor gene on the frequency of some types of tumors.
(from ref. [39])

Table 2 Several low penetrance cancer genes are those
involved in DNA repair. From Vineis et al. [38]

Gene N studies Type of tumor(s)

BRCA2 2 Breast

CCND1 2 Head & Neck

ERCC1 2 Bladder

ERCC2 53 Bladder; lung

ERCC4 6 Breast

ERCC5 2 Lung

MGMT 2 Prostate

NBN 4 Bladder

PARP1 2 Breast

POLI 3 Lung

TP53 115 Breast;cervix;lung

XPA 8 Lung

XRCC1 21 Cervix; esophageal, head & neck; skin; stomach

XRCC2 2 Colorectal

XRCC3 37 Breast; stomach

XRCC4 2 Bladder
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regulation of transcription, apoptosis and, once again,
genome stability (DNA repair) [20,21].
The search for molecular lesions in tumors has taken

on a new dimension thanks to two powerful technolo-
gies: the micro-arrays for quantitative analysis of global
gene expression [22-26] (the transcriptome); and ‘deep’
sequencing for the global analysis of the entire genome
(or at least the exome). The former offers the most com-
plete phenotypic characterization of a tumor we could
ever hope for – we could call this the ultimate pheno-
type; the latter can identify all the somatic mutations in
an individual tumor – we could call this the somatic
genotype (see Figure 7). The ground-breaking paper [27]
on the latter was published in 2006; and already it has
been followed by a flurry of similar work on different
types of tumors [28-31]. The somatic genotype of the
tumor can be fully characterized by sequencing in paral-
lel (from non-tumor DNA) also the inherited genome of
the patient: thus, the issue of inherited variation versus
acquired somatic mutation can be rigorously circum-
vented. A more difficult issue has to do with the fact
that somatic mutations can occur (indeed are relatively
common) in any normal cell: therefore a somatic muta-
tion found in a tumor does non automatically qualify as

being causative of that tumor; therefore we must
improve algorithms aiming to disentangle driver muta-
tions (i.e. pathogenic mutations) from passenger muta-
tions. At any rate, by this approach not only are new
genes being identified; also, patterns of mutations are
emerging (Table 4) that may be signatures of exposure
to individual environmental mutagens [27]: an unex-
pected bonus of molecular studies that is highly relevant
to the focus of this meeting.
Somatic mutations are central to the process of onco-

genesis, because almost certainly no tumor can arise
without them (although epigenetic phenomena are
important [32-34], I think it is highly unlikely that gene
silencing by promoter methylation alone can do the
job). The rate of somatic mutations – and thus the risk
of cancer – can be increased by inherited genes or by
environmental agents, as we have outlined; however,
somatic mutations occur all the time as spontaneous
stochastic events, because the replication of DNA is
extremely faithful but not perfect: this means that there
is always an element of chance in oncogenesis (Figure
8). In this respect, we know surprisingly little about the

MUTATION 

Normal tissue Tumor 

n - 1 

Figure 5 A cartoon illustrating a current view of the origin of
cancer, which is consequent on n successive somatic mutations.
The final result is a clonal population of cells with highly
disregulated growth. It can be presumed that in fact each one of
the mutational steps entails a growth advantage, even if small: this
increases the number of cells that can be targeted by the next
mutation. The term n-1 is used to indicate the penultimate step in
the pathway, because the number n is not fixed: it is estimated that
it may range, for the majority of tumors, from 3 to 6 or even more.

Table 3 The principles and theory of population genetics can be applied to populations of cells.

Events/processes In populations of organisms In populations of somatic cells

Mutation Creates a mutant individual/family Creates a mutant cell/clone

Lethal mutation No offspring No clonal growth

Neutral mutation No visible change No visible change

Mutation with absolute advantage Mutant people will gradually take over Clone will grow faster than other cells

Mutation with conditional advantage Mutant people will increase in a certain environment Clone will grow faster under certain conditions

Subject with average cancer susceptibility

Subject with increased 
cancer risk: 
Increased rate 
of somatic mutations 

Subject with
increased cancer risk: 
First cancer  
mutation
In germ-line 

Figure 6 Inherited mutations can increase cancer proneness
through different mechanisms. The top section of the cartoon is
a schematic of the process outlined in Fig. 5. The middle section
illustrates how an increased rate of somatic mutations can produce
an accelerated rate of the oncogenic pathway: this is the case for
instance for patients with Fanconi anemia, who have a serious
defect in DNA repair and often develop cancer at a young age. The
bottom section illustrates that the number of steps for a normal cell
to become a cancer cell is cut by one if the first mutation is an
inherited (germ-line) mutation rather than an acquired somatic
mutation: this is the case for instance for patients who have an APC
mutation and present with familial adenomatous polyposis.
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normal baseline somatic mutation rate (μ). Over the
past several years, by using the X-linked gene PIG-A as
a sentinel gene, we have developed a relatively simple
methodology to measure μ in any individual [35-37]: we
have determined the normal range of μ, and we have
shown that it is higher in several groups of cancer-
prone subjects (see Figure 9) It will be important to
determine whether μ correlates with the risk of sporadic
cancer, and whether we can measure changes in μ in

subjects who are exposed to environmental carcinogens.
It is also not unconceivable that μ could be decreased
by pharmacological agents.
The progress of contemporary biology has led us

within thirty years from a multitude of theories about
oncogenesis to the established fact that cancer is a
genetic disorder of somatic cells. On the other hand,
much recent literature gives the impression that there is
a surplus of information, from gene expression profiles

Figure 7 A graphic representation (currently referred to as a cyclo-plot) of the multiple defects detected in the genome of a tumor (a
small-cell lung cancer cell line) by deep sequencing. Individual chromosomes are depicted on the outer circle followed by concentric tracks
for point mutation, copy number and rearrangement data relative to mapping position in the genome. Arrows indicate examples of the various
types of somatic mutation present in this cancer genome. From Stratton et al., 2009 (from ref. [30]).

Table 4 Some specific types of somatic mutations found in tumors. From Sjoblom et al., [27].

COLON BREAST TOTAL

Substitutions at CG base pairs CG to TA 413 (59.3) 289 (34.5) 702 (45.8)

CG to GC 48 (6.9) 239 (28.5) 287 (18.7)

CG to AT 93 (13.4) 148 (17.7) 241 (15.7)

Substitutions at TA base pairs TA to CG 56 (8.0) 72 (8.6) 128 (8.3)

TA to GC 51 (7.3) 35 (4.2) 86 (5.6)

TA to AT 35 (5.0) 55 (6.6) 90 (5.9)

Substitutions at specific dinucleotides 5’-CpG-3’ 309 (44.4) 139 (16.6) 448 (29.2)

5’-TpC-3’ 79 (11.4) 257 (30.7) 336 (21.9)

TOTAL 696 838 1534
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to proteomics to metabolomics, with the risk that while
we are truly ‘drowned by data, we remain thirsty for
knowledge’. If we want to heed the teachings of Lorenzo
Tomatis, I think the message is clear: we ought to take
advantage of the new powerful technologies – not by
becoming their slaves, but remaining their masters.
Identifying somatic mutations in a tumor is important
not because it qualifies for ‘oncogenomics’, but because
through a deeper understanding of the nature of that
particular tumor it can help us to optimize therapy or
to design new therapeutic approaches.

Acknowledgements
This article has been published as part of Environmental Health Volume 10
Supplement 1, 2011: Proceedings of the First Lorenzo Tomatis Conference
on Environment and Cancer. The full contents of the supplement are
available online at http://www.ehjournal.net/supplements/10/S1.

Competing interests
The author declares that he has no competing financial or non-financial
interests.

Published: 28 July 2011

References
1. Luzzatto L: Somatic mutations in cancer development. Environmental

Health 2011, 10(Suppl 1):S12.
2. Lijinsky W, Lee KY, Tomatis L, Buutler WH: Nitrosoazetidine–a potent

carcinogen of low toxicity. Die Naturwissenschaften 1967, 54(19):518.
3. Tomatis L: Identification of carcinogenic agents and primary prevention

of cancer. Ann N Y Acad Sci 2006, 1076:1-14.
4. Vogelstein BaK KW: The Genetic Basis of Human Cancer. New York:

McGraw-Hill;, 2 2002.
5. Offit K: Clinical cancer genetics: risk counseling and management. New

York: Wiley-Liss; 19981.
6. Gramatovici M, Bennett JM, Hiscock JG, Grewal KS: Three cases of familial

hairy cell leukemia. Am J Hematol 1993, 42(4):337-339.
7. Fraumeni JF Jr.: Epidemiologic approaches to cancer etiology. Annu Rev

Public Health 1982, 3:85-100.
8. Narod SA, Stiller C, Lenoir GM: An estimate of the heritable fraction of

childhood cancer. Br J Cancer 1991, 63:993-999.
9. Cannon-Albright LA, Thomas A, Goldgar DE, Gholami K, Rowe K,

Jacobsen M, McWhorter WP, Skolnick MH: Familiality of cancer in Utah.
Cancer Res 1994, 54(9):2378-2385.

10. Kadan-Lottick NS, Kawashima T, Tomlinson G, Friedman DL, Yasui Y,
Mertens AC, Robison LL, Strong LC: The risk of cancer in twins: a report
from the childhood cancer survivor study. Pediatr Blood Cancer 2006,
46(4):476-481.

11. Stephens JC, Briscoe D, O’Brien SJ: Mapping by admixture linkage
disequilibrium in human populations: limits and guidelines. Am J Hum
Gene 1994, 55(4):809-824.

12. Weber BL, Nathanson KL: Low penetrance genes associated with
increased risk for breast cancer. Eur J Cancer 2000, 36(10):1193.

13. Nathanson KL, Wooster R, Weber BL: Breast cancer genetics: what we
know and what we need. Nat Med 2001, 7(5):552-556.

14. Hartman M, Loy EY, Ku CS, Chia KS: Molecular epidemiology and its
current clinical use in cancer management. Lancet Oncol 2010,
11(4):383-390.

15. Cairns J: Mutation selection and the natural history of cancer. Nature
1975, 255(5505):197-200.

16. Luzzatto L, Pandolfi PP: Laukaemia: a genetic disorder of haemopoietic
cells. BMJ 1993, 307:579-580.

17. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C: Genetic instability and
darwinian selection in tumours. Trends Cell Biol 1999, 9(12):M57-60.

18. Greaves M: Darwinian medicine: a case for cancer. Nature Reviews 2007,
7(3):213-221.

19. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N,
Stratton MR: A census of human cancer genes. Nature Reviews 2004,
4(3):177-183.

20. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100(1):57-70.
21. Vogelstein B, Kinzler KW: Cancer genes and the pathways they control.

Nat Medicine 2004, 10(8):789-799.
22. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL,

van der Kooy K, Marton MJ, Witteveen AT, et al: Gene expression profiling
predicts clinical outcome of breast cancer. Nature 2002,
415(6871):530-536.

23. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B,
Mohapatra G, Salunga R, Tuggle JT, et al: A two-gene expression ratio
predicts clinical outcome in breast cancer patients treated with
tamoxifen. Cancer cell 2004, 5(6):607-616.

24. Nelson PS: Predicting prostate cancer behavior using transcript profiles. J
Urol 2004, 172(5 Pt 2):S28-32, discussion S33.

CHANCE 

ENVIRONMENT 

INHERITANCE 

Figure 8 A cartoon illustrating the central role of chance in
cancer formation, based on the fact that somatic mutations are
stochastic events. Inherited factors (see text and Fig. 6) can
modulate the process, but they somatic mutations are still needed
for the onset of cancer; and environmental factors work in large
measure by increasing either the mutation rate (mutagenic agents)
or the number of cell divisions (e.g. with an inflammatory process,
such as one caused for instance by Helicobacter pylori).

0

25

50

75

100

5.0

500

1000

1.00 5.00

M
ut

at
io

n 
R

at
e 

(
) x

 1
07

Normal FA NBS AT
0

25

50

75

100

5.0

500

1000

1.00 5.00

M
ut

at
io

n 
R

at
e 

(
) x

 1
07

Normal FA NBS AT
Figure 9 A new methodology makes it relatively easy to
measure in any individual the intrinsic rate of somatic
mutation. In two conditions known to be associated with cancer
proneness the rate of somatic mutation is markedly increased over
that observed in a control group. (from ref. [36]).
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