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Abstract
Background: Bone marrow stromal cells produce cytokines required for the normal growth and
development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells
contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine
production may significantly compromise the development of normal blood cells. We have shown
that environmental chemicals, such as aromatic hydrocarbon receptor (AhR) agonists, suppress B
lymphopoiesis by modulating bone marrow stromal cell function. Here, we extend these studies to
evaluate the potential for two prototypic AhR agonists, 7,12-dimethylbenz [a]anthracene (DMBA)
and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), to alter stromal cell cytokine responses.

Methods: Bone marrow stromal cells were treated with AhR agonists and bacterial
lipopolysaccharide (LPS) to mimic innate inflammatory cytokine responses and to study the effects
of AhR ligands on those responses. Steady state cytokine RNA levels were screened by RNAse
protection assays (RPA) and quantified by real-time PCR. Cytokine (IL-6) protein production was
measured by ELISA. NF-κB EMSAs were used to study IL-6 transcriptional regulation.

Results: RPAs indicated that AhR+ bone marrow stromal cells consistently up-regulated genes
encoding IL-6 and LIF in response to LPS, presumably through activation of Toll-like receptor 4.
Pre-treatment with low doses of DMBA or TCDD selectively abrogated IL-6 gene induction but
had no effect on LIF mRNA. Real-time-PCR indicated a significant inhibition of IL-6 mRNA by AhR
ligands within 1 hour of LPS challenge which was reflected in a profound down-regulation of IL-6
protein induction, with DMBA and TCDD suppressing IL-6 levels as much as 65% and 88%,
respectively. This potent inhibitory effect persisted for at least 72 hours. EMSAs measuring NF-κB
binding to IL-6 promoter sequences, an event known to induce IL-6 transcription, indicated a
significant decrease in the LPS-mediated induction of DNA-binding RelA/p50 and c-Rel/p50
heterodimers in the presence of DMBA.

Conclusions: Common environmental AhR agonists can suppress the response to bacterial
lipopolysaccharide, a model for innate inflammatory responses, through down-regulation of IL-6, a
cytokine critical to the growth of several hematopoietic cell subsets, including early B cells. This
suppression occurs at least at the level of IL-6 gene transcription and may be regulated by NF-κB.
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Background
Bone marrow stromal cells support the growth and devel-
opment of all eight hematopoietic cell lineages through
cell-cell contact and the production of soluble cytokines
[1,2]. Although this process generally is well-regulated by
both adhesion molecules and receptor/ligand pairs, aber-
rant stromal cell-blood cell interactions have been docu-
mented and are associated with a variety of diseases that
involve abnormal growth and development of blood cells
[3-5].

Perhaps the best studied stromal cell-blood cell interac-
tion is that which occurs between bone marrow stroma
and developing B lymphocytes [6-9]. Of particular interest
in these studies is the contribution of stromal cell-derived
IL-6 to B lymphopoiesis. Originally described as a tumor-
derived growth factor [10], IL-6 now is known to be
required for the growth of normal bone marrow progeni-
tor B cells [11], for terminal differentiation of surface
immunoglobulin-bearing B cells [12,13], and for the
long-term survival of bone marrow plasma cells [13-15].

Aberrant IL-6 expression has been associated with autoim-
mune diseases, including, but not limited to vitiligo [16],
systemic lupus erythematosus (SLE) [17,18], rheumatoid
arthritis [19], and multiple sclerosis [20]. Moreover, IL-6
has been recognized as an important growth and survival
factor for neoplastic bone marrow plasma cells in multi-
ple myeloma [5,14,21] and has been targeted with specific
antibodies for myeloma therapy [22]. In addition, IL-6 is
emerging as an important survival and angiogenesis factor
in other cancers, including basal cell carcinoma, prostate
cancer, and Kaposi's carcinoma [23-25]. These studies
illustrate the importance of IL-6 regulation in normal cell
function and suggest that any modulation of its expres-
sion could have important pathologic consequences.

We and others demonstrated that exposure of bone mar-
row stromal cells to common environmental contami-
nants, such as polycyclic aromatic hydrocarbons (PAHs),
adversely affect their function [26-34]. Specifically, the
prototypic PAHs, benzo [a]pyrene (B [a]P) and 7,12-
dimethylbenz [a]anthracene (DMBA) induce primary or
cloned stromal cells to deliver a death signal to adjacent
pre- and pro/pre-B cells [28-34]. Induction of this apopto-
sis signal in stromal cells is dependent on activation of the
aryl hydrocarbon receptor (AhR), a cytosolic receptor that
is converted into a transcription factor on binding of any
one of a number of PAHs, halogenated aromatic hydro-
carbons (HAHs), or planar polychlorinated biphenyls
(PCBs) [35-37]. Other laboratories demonstrated that
HAH, such as 2,4,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), suppress the production of bone marrow-
derived T cell precursors [38,39], although the role of
AhR+ bone marrow stromal cells in this process was not

evaluated. Interestingly, exposure to AhR ligands has been
associated with increased multiple myeloma risk [40-42],
suggesting a possible link between AhR activation, aber-
rant bone marrow stromal cell cytokine production, and
plasma cell dyscrasia.

In light of the ability of AhR ligands to target bone mar-
row stromal cells and the importance of bone marrow
stromal cells to blood cell development, we sought to
determine if AhR ligands compromise production of bone
marrow stromal cell cytokines such as IL-6. To this end, a
well-characterized AhR+ bone marrow stromal cell line
(BMS2) was used to evaluate the effects of a PAH (DMBA)
and an HAH (TCDD) on cytokine gene expression
induced by the Toll-like receptor-4 (TLR-4) ligand,
lipopolysaccacharide (LPS). LPS was chosen for these
studies since it up-regulates the production of several
bone marrow-derived growth factors, including IL-6, in
models of inflammatory cytokine responses [8,11,43-45].
Particular attention was paid to the potential role of the
promiscuous transcription factor NF-κB in AhR ligand
effects since we and others demonstrated a physical and
functional interaction between the AhR and the p65
(RelA) subunit of NF-κB [46,47] and since NF-κB plays an
important role in regulating IL-6 gene transcription [48].

Methods
Chemicals
TCDD (99.99% pure) was obtained from Ultra Scientific
(North Kingstown, RI). DMBA and Staphylococcus
lipopolysaccharide (LPS) were purchased from Sigma
Chemical Co. (St. Louis, MO).

Cell culture and treatment
BMS2, a bone marrow stromal cell line that supports the
growth and differentiation of granulocytes, pro/pre-B,
and pre-B cells [8,34] was a gift from Dr. P. Kincade (Okla-
homa Medical Research Center). BMS2 cells were main-
tained in DMEM (Mediatech, Washington, DC)
supplemented with 5% fetal calf serum, L-glutamine
(Gibco/BRL, Gaithersburg, MD), 2-mercaptoethanol
(Sigma Chemical Co) and 25 µg/ml plasmocin (Invivo-
gen, Carlsbad, CA) at 37°C and 7.5% CO2. Cells were
passed twice weekly and determined to be mycoplasma-
free by a PCR based protocol (Mycoplasma Detection Kit;
ATCC, Manassas, VA).

BMS2 cells were plated in antibiotic-free medium for 24
hours prior to treatment with vehicle (0.01% ethanol final
concentration), 1–10 µM DMBA dissolved in ethanol, or
1 nM TCDD dissolved in DMSO (0.01% final concentra-
tion). One hour later, LPS was added to a final concentra-
tion of 1 µg/ml. Addition of LPS was delayed one hour to
maximize AhR ligand uptake prior to LPS challenge [49].
Cells were harvested at various times thereafter for RNA
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analysis (RNase protection assays; Real-time PCR) or
nuclear protein-DNA binding analyses (EMSA), and
supernatants were harvested for IL-6 quantitation by
ELISA.

RNA isolation
Culture well-adherent BMS2 cells were removed with
0.05% trypsin (Sigma), rinsed with PBS, pelleted, and fro-
zen at -80°C until use. Total RNA was isolated using the
RNeasy kit (Qiagen; Valencia, CA) or SV Total RNA Sys-
tem (Promega, Madison, WI). RNA was quantitated and
samples visualized on an RNA gel to ensure RNA integrity.

Ribonuclease Protection Assay (RPA)
The RiboQuant Multi-probe RNase Protection Assay Sys-
tem (BD PharMingen, San Diego, CA) was used for RPA
experiments. Riboprobes were generated with kit compo-
nents and fresh [α-32P]-UTP 3000 Ci/mmol (Perkin-
Elmer, Boston, MA) and used within 2 days. Two tem-
plates (mCK4 and mCK3b) were tested to screen for
changes in genes encoding multiple cytokines: IL-3, IL-6,
IL-7, IL-11, IFNγ, TNFα, TNF-β, LT-β, TGFβ 1, TGFβ 2,
TGFβ 3, MIF, GM-CSF, M-CSF, G-SF, LIF, and SCF. L32
and GAPDH were also represented as internal standards.
Purified probes were mixed with 7–15 µg of total RNA
and hybridized overnight. After cooling, annealed targets
were treated with RNase and the resulting fragments were
purified, denatured and resolved on a 4.5% sequencing
gel. The gels were dried completely, exposed to film and
quantified with a Molecular Dynamics Phosphor Imager
(Amersham Biosciences, Sunnyvale, CA) using Image-
quant software (Amersham).

Real-Time PCR
IL-6 primers were designed to span exon junctions and
were tested against genomic templates. PCR products
were resolved on agarose gels to show minimal contribu-
tion from genomic products or primer dimers. IL-6 primer
sequences were: 5-'CAAGAGACTTCCATCCAGTTGCCT-3'
and 5'-TTTCTCATTTCCACGATTTCCCAG-3'. β-actin
primers were 5'-GTCGTCGACAACGGCTCCGGCATGTG-
3' and 5'-CATTGTAGAAGGTGTGGTGCCAGATC-3'. Total
RNA was reverse transcribed into cDNA using TaqMan
Reverse Transcription Reagents (PE Applied Biosystems,
Foster City, CA). cDNA (0.01 µg) was used in the hot start
Real-time PCR with SYBR Green PCR Master Mix (PE
Applied Biosystems). Real-time PCR was carried out with
the ABI Prism 7700 Sequence Detector (PE Applied Bio-
systems). The PCR conditions were: 95°C for 10 min, 40
cycles of 90°C for 15 s, and 60°C for 1 m, with fluores-
cence measurements read during each cycle. Fluorescence
measurements were used to compare transcripts between
samples using the Comparative CT Method, a method for
determining relative amounts of transcripts based on an

internal control when the absolute number of transcripts
represented is unknown (PE Applied Biosystems).

ELISA
BMS2 cells were plated at 25,000 cells/ml in T75 flasks
and cultured for 18–24 hours prior to treatment with
vehicle (0.01% ethanol or DMSO), 1 µM DMBA, or 1 nM
TCDD. One hour later, cultures were challenged with 1
µg/ml LPS. At each time point indicated, 500 µl aliquots
of BMS2 cell culture supernatants were drawn off and fro-
zen at -20°C. ELISAs were carried out with the OptEIA
mouse IL-6 ELISA kit (BD Pharmingen) according to the
manufacturer's instructions. Supernatant samples were
diluted 1:50 and plated in duplicate wells of a 96 well
plate. Freshly diluted rIL-6 was used to generate a standard
curve on each plate analyzed. The lower limit of detection
for this ELISA was 15 pg/ml IL-6. Plates were read at 450
nm using a spectrophotometric plate reader. Raw data
were corrected against blank wells and converted to pg/ml
using the standard curve.

NF-κB EMSA
BMS2 cells were treated in 6-well plates with vehicle or 1
µM DMBA. One hour later, 1 µg/ml LPS or PBS was added
to the cultures, and cells were harvested 16 or 24 hours
later. Nuclear proteins were extracted as described previ-
ously [50]. For determination of NF-κB activation, a dou-
ble stranded oligonucleotide containing the NF-κB
binding site from the upstream regulatory element of c-
myc (5'-GATCCAAGTCCGGGTTTTCCCCAACC-3') [51]
was used. The DNA probe was end-labeled using T4 poly-
nucleotide kinase (Promega, Madison, WI) and [γ-32P]-
ATP and was purified using a Centrispin-20 column (Prin-
ceton Separations, Adelphia, NJ). EMSAs were performed
as follows: 32P-labeled DNA (~0.5 ng, 50,000 cpm) and 2
µg of nuclear protein were combined with buffer (final
concentrations: 10 mM Tris-HCl, pH 7.5, 1 mM EDTA,
100 mM sodium chloride, 0.5 mM magnesium chloride,
1 mM DTT, 20 µg BSA, 10% glycerol, 0.5% Triton X-100)
and poly dI-dC (1 µg) in a final volume of 20 µl. The mix-
ture was incubated at room temperature for 30 min. The
gel was run as above, dried and exposed to film. For quan-
tification, gels were analyzed by phosphorimaging on a
Molecular Dynamics Phosphor Imager (Amersham Bio-
sciences). The identity of the NF-κB subunits was deter-
mined by including antibodies (Santa Cruz
Biotechnology, Santa Cruz, CA) specific for p50 (sc-114),
p52 (sc-848), Rel A (sc-372) or c-Rel (sc-71).

Statistics
Statistics were calculated using Prism version 3.0 for Mac-
intosh (GraphPad). Data are presented as means ± SE.
Data were analyzed using the Student's T-test or single fac-
tor ANOVA's with the Dunnet's multiple comparisons
test.
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Results
LPS up-regulates cytokine gene induction in bone marrow 
stromal cells
Bone marrow stromal cells support the growth and differ-
entiation of early B cells [8]. In previous studies, we dem-
onstrated that cloned bone marrow stromal cell lines,
including BMS2 cells, support the growth of primary pre-
B and cloned pro/pre-B cells and that treatment of the
bone marrow stromal cells with AhR agonists alters their
function [28-30,32-34,52]. As a first step in determining if
AhR ligands affect stromal cell cytokine production, base-
line levels of cytokine mRNAs in BMS2 cells were deter-
mined by RNAse protection assays.

RPAs with RNA from BMS2 cells consistently demon-
strated significant expression of IL-11, monocyte colony
stimulating factor (M-CSF), leukemia inhibitory factor (LIF),
IL-6, transforming growth factor-β1 (TGF-β1), TGF-β3, and
macrophage migration inhibitory factor (MIF) mRNAs (Fig-
ure 1). Low but detectable levels of IL-7 mRNA also were
noted. Addition of LPS consistently induced LIF and IL-6
mRNAs within 7 hours (Figure 1 and Table 1). GM-CSF
and G-CSF mRNAs were clearly induced in two of three
and three of four experiments respectively. As suggested
by observations made with other stromal cell lines
[44,45], these studies demonstrate a potent innate inflam-
matory cytokine response against bacterial LPS. It should
be noted that these studies do not exclude possible LIF or
other cytokines at other time points.

The effect of AhR agonists on LPS-mediated IL-6 mRNA 
induction
To determine the effect of AhR ligands on LPS-induced
cytokine induction, BMS2 cells were treated with vehicle
(0.01% ethanol), 1 µM DMBA, or 1 nM TCDD one hour
prior to addition of 1 µg/ml LPS. Cells were harvested 8
hours later. RNA was extracted and assayed for cytokine
mRNA levels by RPA.

Neither DMBA nor TCDD had a consistent effect on base-
line levels of any cytokine mRNA assayed including IL-6
(Figure 2A and 2B). This result contrasts with that
obtained with vascular endothelial cells in which AhR
agonists (coplanar PCBs) alone induced IL-6 [53]. As in
previous experiments, LPS significantly induced LIF and
IL-6 mRNAs (Figure 2A). (RNA encoding GM-CSF and G-
CSF also were increased, although bands representing
these RNAs were sometimes difficult to see when under-
exposing blots to emphasize IL-6 levels (e.g. Figure 2)).
Importantly, in five experiments, both DMBA and TCDD
significantly reduced the LPS-mediated IL-6 mRNA
increase in BMS2 cells (Figure 2A and 2B; p < 0.05). Other
genes activated by LPS, i.e. LIF, GM-CSF, and G-CSF, were
not affected by either of these AhR agonists (Figure 2A and

data not shown) demonstrating the selectivity of AhR ago-
nist-mediated effects on stromal cells.

Kinetics studies were performed using real-time PCR as a
readout to quantify this change in IL-6 mRNA levels. As
seen in Figure 3, IL-6 mRNA levels increased within 1 hr
of LPS stimulation and reached a plateau at the four hour
time point. Inclusion of DMBA in the cultures reduced IL-
6 mRNA induction significantly at every time point,
including at 1 hour (p < 0.02). These results are consistent
with those obtained by RPA and demonstrate that AhR lig-
ands suppress IL-6 mRNA levels by approximately 40–
60%.

DMBA and TCDD significantly abrogate LPS-induced IL-6 
production
The results described above indicate consistent suppres-
sion of LPS-mediated IL-6 mRNA induction. To determine
if this decrease in steady state mRNA is reflected in a pro-
portional decrease in secreted IL-6 protein levels, BMS2
cells were cultured for 18 hrs prior to addition of vehicle,
1 µM DMBA, or 1 nM TCDD. One hour later, cultures
were treated with PBS (to assay effects of AhR ligands on
background IL-6 levels) or challenged with 1 µg/ml LPS
(i.e. time zero). Culture supernatants were harvested at
time zero and 6–72 hours thereafter and assayed by ELISA
for IL-6 levels.

Supernatants from BMS2 cultures established 18–24 hrs
previously contained approximately 700 pg/ml IL-6 (Fig-
ure 4A). Addition of DMBA had no effect on IL-6 levels at
any time point assayed. However, TCDD significantly (p
< 0.05) reduced the background level of IL-6 as early as 24
hrs after its addition to the cultures. Control experiments
in which recombinant IL-6 was assayed in the presence of
TCDD indicated that TCDD did not interfere with the IL-
6-specific ELISA (data not shown). Therefore, TCDD is
capable of reducing baseline IL-6 protein levels early in
the response to LPS.

A significant increase in secreted IL-6 levels was seen as
early as 6 hours after LPS treatment (Figure 4B). IL-6 levels
continued to rise throughout the 72 hour period after LPS
exposure. However, this LPS-dependent increase in
secreted IL-6 was suppressed in cultures containing either
DMBA or TCDD, with TCDD suppressing IL-6 levels as
much as 88% at the 72 hour time point. Neither TCDD
nor DMBA affected BMS2 proliferation as all cultures
reached confluency at the same time (approximately 96
hrs after plating). These data demonstrate that activation
of the AhR has a significant effect on the ability of bone
marrow stromal cells to produce IL-6. Furthermore, the
profound decrease in IL-6 protein levels in TCDD-exposed
cells exhibiting only a 40–60% decrease in IL-6 mRNA
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LPS induces GM-CSF, G-CSF, LIF, and IL-6 mRNAs in bone marrow stromal cellsFigure 1
LPS induces GM-CSF, G-CSF, LIF, and IL-6 mRNAs in bone marrow stromal cells. BMS2 (bone marrow stromal) cells 
were cultured in the presence of 1 µg/ml LPS for eight hours. Cells were harvested, RNA was extracted, and mRNAs specific 
for several cytokines were assayed by RNAse protection assays (RPAs). Representative data from two experiments (seven 
total) are presented.
Page 5 of 13
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levels, suggests that at least this AhR ligand may suppress
IL-6 production at more than just the RNA level.

NF-κB activation correlates with IL-6 mRNA levels
LPS-induced IL-6 gene transcription in murine monocytes
is controlled primarily by NF-κB, although other tran-
scription factors may play minor roles [48]. Since we and
others have demonstrated interactions between the AhR
and the NF-κB signaling pathways [46,47,53,54], it was
important to determine if activation of the AhR influ-
enced NF-κB activity in bone marrow stromal cells. To this
end, BMS2 cells were treated with vehicle or DMBA one
hour prior to exposure to LPS as in previous experiments.
Cells were harvested 16–24 hours later. Nuclear proteins
were extracted and assayed in electromobility shift assays
(EMSAs) for binding of nuclear proteins to a radiolabelled
NF-κB probe consisting of the NF-κB-binding upstream
regulatory element of the c-myc promoter [29].

Data presented in Figure 5A extend previous studies per-
formed with monocytes by demonstrating that LPS
induces NF-κB-DNA binding in bone marrow stromal
cells. The ability to supershift NF-κB-DNA complexes with
antibodies specific for the p50 or RelA/p65 subunits of
NF-κB (Figure 5B) indicates that LPS primarily activates a
conventional NF-κB complex probably consisting of p50/
RelA. While DMBA alone had no effect on the low base-
line levels of NF-κB-DNA binding, it modestly suppressed
the NF-κB activity induced with LPS (Figure 5A). Quanti-
fication of normalized band densities indicated that
DMBA significantly decreased LPS-induced NF-κB-DNA
binding by 33% (p < 0.05) (Figure 5C). These data dem-
onstrate a correlation between NF-κB activity and IL-6
mRNA levels.

Discussion
The present studies were designed to evaluate the ability
of AhR ligands to influence a spectrum of bone marrow
stromal cell cytokines. In this system, exposing AhR+ stro-
mal cells to LPS induced an inflammatory response char-
acterized in part by up-regulation of IL-6 Any
environmental chemical capable of compromising this
response has the potential to disrupt the regulation of
many important stromal cell functions, including genera-
tion of inflammatory responses in general and the
elaboration of several cytokines, including IL-6, to regu-
late blood cell development in particular.

Previously, we demonstrated that DMBA and TCDD, two
prototypic AhR ligands, activate the AhR in BMS2 cells
[28,34]. In studies presented here we demonstrate that
both TCDD and DMBA suppress IL-6 production at least
through the reduction of steady state IL-6 mRNA levels.
The reduction in IL-6 mRNA levels does not exclude the
possibility that these AhR ligands also suppress IL-6 pro-
tein secretion or stability. The specificity of this toxicity is
underscored by the failure of these AhR agonists to affect
either the baseline or LPS-induced levels of mRNAs spe-
cific for several other cytokines at the time points assayed
here, although modulation of these or other cytokines at
other time points cannot be excluded. This result also
indicates that the observed changes in IL-6 do not result
from overt toxicity or suppression of cell growth by AhR
agonists.

In our continuing investigations into interactions
between AhR and NF-κB signaling pathways [47], we
sought to determine if AhR signaling influences NF-κB
activity in bone marrow stromal cells. An added incentive

Table 1: LPS induces GM-SCF, G-CSF, LIF, and IL-6 mRNAs in bone marrow stromal cells

Gene N Mean Fold Changea ± SE P-valueb

IL-11 4 1.3 ± 0.2 0.27
IL-7 5 0.9 ± 0.2 0.58

GM-CSF 3 Increasedc -
G-CSF 4 Increasedc -

LIF 5 5.7 ± 1.2 0.02*
IL-6 7 7.0 ± 1.5 0.01*
SCF 4 1.1 ± 0.1 0.40

M-CSF 5 1.0 ± 0.1 0.79
TGF-β1 2 1.2, 1.4 0.26
TGF-β3 2 0.8, 0.9 0.18

MIF 2 0.9, 1.0 0.52

a From the Ribonuclease Protection Assays (RPAs), mean fold-change was determined by normalizing the optical density band of the LPS-treated 
sample to the housekeeping gene GAPDH or L-32, then expressing it relative to the optical density of the normalized band from the vehicle-treated 
sample. b Based on one-sample t-test to determine whether mean was significantly different from maximum LPS induction (µ = 1.0). c Expression of 
GM-CSF and G-CSF was sometimes undetectable in unstimulated cells, thus the LPS-induced expression could not be described appropriately as 
"fold change" * p < 0.05
Page 6 of 13
(page number not for citation purposes)



Environmental Health: A Global Access Science Source 2003, 2 http://www.ehjournal.net/content/2/1/16
LPS-induced IL-6 mRNA induction is inhibited by DMBA and TCDDFigure 2
LPS-induced IL-6 mRNA induction is inhibited by DMBA and TCDD. BMS2 cells were pre-treated with vehicle (0.01% eth-
anol), 1 µM DMBA, or 1 nM TCDD for one hour prior to challenge with 1 µg/ml LPS. Eight hours later, cells were harvested, 
RNA was extracted, and cytokine-specific mRNAs were assayed by RPA. (A) Representative data from two experiments 
(seven total) are presented. (B) Optical densities of bands corresponding to each cytokine mRNA were normalized to L-32 
band densities and then expressed relative to the maximal response seen with LPS-plus-vehicle-treated cultures. Data repre-
sent the means ± SE from 4–5 independent experiments. One-sample t-tests were conducted to compare relative expressions 
to the theoretical µ = 1 (maximum response in LPS-plus-vehicle-treated cultures). * Significantly different from cultures treated 
with LPS and vehicle, p < 0.05; ** Significantly different from cultures treated with LPS and vehicle p < 0.0001.
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for these studies was provided by the observation that the
IL-6 gene promoter contains an NF-κB binding site which
plays a major role in regulating LPS-induced IL-6 tran-
scription [55-57]. Indeed, EMSAs indicated a profound
increase in NF-κB activity following LPS exposure. This
induction was suppressed modestly (33%) but signifi-
cantly (p < 0.05) by DMBA. These results suggest a possi-
ble mechanism by which the AhR may regulate IL-6
transcription, i.e. suppression of NF-κB signaling.

The AhR ligand-mediated decrease in NF-κB activity doc-
umented here differs from results obtained with other cell
types. For example, coplanar PCBs, which can activate the
AhR, increase IL-6 production in endothelial cells [58].
Furthermore, TCDD increases both AP-1 and NF-κB bind-
ing to their cognate response elements in hepatoma cells
[59,60]. In the latter example, NF-κB up-regulation
involved an increase in binding of p50 homodimers to a
consensus NF-κB nucleotide sequence. Unlike the p50/

RelA-containing complexes implicated in the present
studies (Figure 5B), p50 homodimers may actually block
p50/p65-dependent gene activation [61]. Indeed, p50/
RelA dimers are well known to activate gene transcription
[29,51,62,63]. Therefore, its suppression by AhR ligands
is likely to have important biological consequences.

Finally, the results presented here demonstrate the ability
of AhR ligands to affect cytokine production in vitro. Sev-
eral studies indicate cytokine dysregulation in vivo follow-
ing exposure to TCDD or PAH, although the nature of
these changes differs significantly between systems. In vivo
exposure to TCDD in and of itself increases serum TNF-α
levels [64] and the administration of a TNF-immunoglob-
ulin fusion protein [64] or TNF-α-specific antibodies
ameliorates TCDD-mediated inflammatory responses
[65]. Furthermore, TCDD exacerbates the TNF-mediated
inflammatory responses to LPS in vivo [66]. In contrast,

Kinetics of DMBA-mediated suppression of IL-6 mRNA levels measured byReal-time PCRFigure 3
Kinetics of DMBA-mediated suppression of IL-6 mRNA levels measured byReal-time PCR. BMS2 cells were pre-treated 
in triplicate with vehicle (0.01% ethanol) or 1 µM DMBA 1 hour prior to challenge with 1 µg/ml LPS. At various points thereaf-
ter, cells in individual wells were harvested separately, RNA was extracted, and cytokine-specific mRNAs were quantified by 
real-time PCR. Data represent means ± SE of IL-6 mRNA levels (number of PCR cycles for half-maximal amplification) normal-
ized to β-actin levels according to the Comparative CT $Method (PE Applied Biosystems) and expressed relative to maximal IL-
6 levels in LPS-plus-vehicle-treated cultures at the 4 hour time point. Representative data from a total of three experiments are 
shown. *Statistically different than vehicle-treated controls, p < 0.02 (paired t test).
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DMBA and TCDD suppress LPS-induced IL-6 protein productionFigure 4
DMBA and TCDD suppress LPS-induced IL-6 protein production. BMS2 cells were plated 250,000 cells per flask and cul-
tured for 18–24 hours prior to treatment with vehicle (0.01% ethanol), 1 µM DMBA, or 1 nM TCDD. One hour later, cultures 
were challenged with 1 µg/ml LPS as indicated. Supernatants were sampled at various times thereafter and assayed by ELISA for 
IL-6 protein levels. IL-6 concentrations were determined by comparison to a recombinant IL-6 standard curve. Data are pre-
sented as means ± SE from three independent experiments. IL-6 levels for each time point within an experiment were meas-
ured in triplicate (A) IL-6 levels in groups not challenged with LPS. *Significantly different from vehicle control, p < 0.05 (one-
way ANOVA and Dunnett's multiple comparisons test). **Significantly different from vehicle control, p < 0.01. (B) IL-6 levels in 
groups challenged with LPS. *Significantly different from corresponding LPS-plus-vehicle wells (p < 0.05). **Significantly differ-
ent from vehicle or vehicle-plus-LPS wells, p < 0.01.
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DMBA inhibits LPS-induced NF-κB-DNA bindingFigure 5
DMBA inhibits LPS-induced NF-κB-DNA binding. BMS2 cells were left untreated (naïve) or were pre-treated with vehicle 
(0.01% ethanol) or 1 µM DMBA for one hour prior to challenge with 1 µg/ml LPS. Cells were harvested 16 and 24 hrs later. 
Nuclear proteins were extracted and analyzed by EMSA for binding to an NF-κB probe derived from the c-myc upstream regu-
latory element. (A) Data from a representative experiment (three total) are presented. An arrow indicates the NF-κB-specific 
band. (B) EMSAs were performed with nuclear extracts from BMS2 cells treated for 30 min with LPS in the presence of anti-
bodies specific for the p50, p53, RelA (p65), or c-Rel subunits of NF-κB. (C) Quantification of NF-κB-DNA binding in nuclear 
extracts treated for 16–24 hrs. NF-κB band densities were normalized to untreated controls within the same experiments. 
**Significantly different from LPS-plus vehicle-treated control, p < 0.05 (paired t-test).
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TCDD injection suppresses IL-6 responses of splenic T
lymphocytes to a protein antigen [67].

Results of in vivo exposures to AhR ligands may even differ
between tissues. For example, TCDD injection results in a
significant decrease in IL-18 mRNA in the thymus but a
significant increase in the spleen [68,69]. Similarly, IFN-γ
levels in lymph nodes from TCDD-treated and virus-
infected mice decrease while levels in the lung increase 10
fold [70]. Clearly, the effects of AhR ligands in vivo are var-
ied and complex, likely involving interactions between
many cell types and cytokine feedback loops. Signifi-
cantly, none of these studies have evaluated inflammatory
cytokine production in the bone marrow. Future experi-
ments from our laboratory will address this gap in knowl-
edge about AhR ligand toxicity.

Conclusion
The studies presented here demonstrate that prototypic
AhR agonists, including an environmentally ubiquitous
dioxin, specifically suppress the LPS-induced production
of IL-6 by bone marrow stromal cells. The more potent
AhR agonist, TCDD, also reduced baseline levels of IL-6
protein. Inhibition of IL-6 production in response to LPS
occurs at least at the level of mRNA expression and may
involve down-regulation of NF-κB, a transcription factor
known to play a major role in regulating IL-6 gene tran-
scription. Collectively, the results demonstrate the poten-
tial for common environmental AhR ligands to
compromise the ability of bone marrow stromal cells to
generate important inflammatory responses and to sup-
port production of blood cell lineages.
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