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Abstract
Background: There is a growing body of literature linking GIS-based measures of traffic density
to asthma and other respiratory outcomes. However, no consensus exists on which traffic
indicators best capture variability in different pollutants or within different settings. As part of a
study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple
traffic-related air pollutants within urban communities, using a range of GIS-based predictors and
land use regression techniques.

Methods: We measured fine particulate matter (PM2.5), nitrogen dioxide (NO2), and elemental
carbon (EC) outside 44 homes representing a range of traffic densities and neighborhoods across
Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were
collected at each home during winters and summers from 2003 to 2005. Traffic indicators were
derived using Massachusetts Highway Department data and direct traffic counts. Multivariate
regression analyses were performed separately for each pollutant, using traffic indicators, land use,
meteorology, site characteristics, and central site concentrations.

Results: PM2.5 was strongly associated with the central site monitor (R2 = 0.68). Additional
variability was explained by total roadway length within 100 m of the home, smoking or grilling near
the monitor, and block-group population density (R2 = 0.76). EC showed greater spatial variability,
especially during winter months, and was predicted by roadway length within 200 m of the home.
The influence of traffic was greater under low wind speed conditions, and concentrations were
lower during summer (R2 = 0.52). NO2 showed significant spatial variability, predicted by
population density and roadway length within 50 m of the home, modified by site characteristics
(obstruction), and with higher concentrations during summer (R2 = 0.56).

Conclusion: Each pollutant examined displayed somewhat different spatial patterns within urban
neighborhoods, and were differently related to local traffic and meteorology. Our results indicate
a need for multi-pollutant exposure modeling to disentangle causal agents in epidemiological
studies, and further investigation of site-specific and meteorological modification of the traffic-
concentration relationship in urban neighborhoods.
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Background
There is a growing body of literature linking geographic
information system (GIS)-based measures of traffic expo-
sure to asthma and other respiratory outcomes. In the U.S.
and Europe, children living or attending school near truck
routes and highways show greater asthma symptoms [1-
3], asthma hospitalizations [4,5], respiratory illness [1],
allergic rhinitis [6], and reduced lung function [7]. How-
ever, proximity measures can represent a variety of pollut-
ants or other near-roadway exposures (i.e., noise,
poverty). There is no consensus on which traffic indicators
may best capture variability in different pollutants within
different settings, and the specific exhaust components
responsible for health effects remain unidentified. For
these reasons, there is a need to distinguish the relative
spatial patterns of multiple traffic-related air pollutants,
and to estimate concentrations using different GIS-based
traffic indicators applicable across larger epidemiological
studies.

Pollutants of interest include nitrogen dioxide (NO2), fine
particulate matter (PM2.5), and elemental carbon (EC);
each has been linked to both respiratory health and vehic-
ular emissions. One recent study distinguished their rela-
tive spatial distributions within urban settings using GIS;
this study found greater intra-urban variability and
stronger traffic influences for NO2 and EC than for PM2.5
in European cities [8]. Comparable multi-pollutant anal-
yses in the United States or in other settings have been
limited, especially with a focus on residential settings
within epidemiological investigations.

Addressing multiple pollutants at residences in large
cohort studies is valuable but imposes constraints on the
exposure assessment. For example, equipment-intensive
multi-pollutant sampling (including the indoor environ-
ment) generally limits the number of sites that can be
sampled simultaneously, reinforcing the need for models
with spatial and temporal components, which can cali-
brate spatial models over time. For outcomes like asthma
etiology, models estimating long-term exposures are
needed, implying that measurements need to be taken at
multiple points in time and that models need to separate
spatial from temporal factors to the extent possible. This
necessitates a careful evaluation of the role of meteorol-
ogy in modifying the relationship between traffic and con-
centrations, a topic that has received little attention in
GIS-based models to date.

In addition, issues regarding choice of traffic indicators
and spatial-temporal separation may be exacerbated
within urban neighborhoods, as predictors shown to be
significant elsewhere (i.e., land use type) lack adequate
variability to predict concentrations. Moreover, unlike
measurements collected in open spaces near major road-

ways, residential measures may be impacted by near-
home sources (e.g., idling cars, home heating, smoking,
grilling) and site characteristics altering the traffic-concen-
tration relationship (e.g., building configuration). Moni-
toring at residences imposes logistical constraints related
to site configuration (e.g., availability of power supply,
secure space), which may modify the traffic-concentration
relationship. Traffic data quality can also be poor in resi-
dential areas, as most government and commercially-
available datasets relay on estimates for smaller roads,
reducing variability and producing significant misclassifi-
cation within residential areas. Finally, in North America,
the diesel fraction of total traffic in residential neighbor-
hoods is generally smaller than in Europe, and is poorly
characterized, such that total traffic measures may be less
predictive of EC concentrations.

Land-use regression (LUR), a standard approach for pre-
dicting pollutant concentrations using concentration
measures, GIS-derived spatial parameters, and site charac-
teristics, allows for the characterization of exposure differ-
entials within urban areas, and has been shown to better
capture small-scale intra-urban variability than does krig-
ing, integrated meteorological-emission (IME) models, or
dispersion models [9]. LUR models of traffic-related pol-
lution have shown stronger relationships with children's
respiratory outcomes than have simple distance-to-road-
way measures [10]. LUR and other GIS-based methods,
however, have shown poor generalizability, as parameters
selected using available spatial data and local characteris-
tics in one city may not produce comparable estimates for
another. Most LUR studies to date have been based on
measurements collected near roadways or in other unob-
structed urban locations, often at a fixed height [11,12].
As such, most LUR studies find a clear effect of traffic,
potentially over-estimating the influence of traffic on
average personal exposures in the urban area, and few
LUR studies have attempted to characterize the near-home
environment in dense residential areas. A recent LUR
study captured a similar geographic region as our analysis,
but focused on metropolitan-scale variability for a single
pollutant (black carbon) with comparatively little explo-
ration of spatial predictors, traffic terms, or meteorologi-
cal contributors beyond wind speed [13]. Only one
previous LUR study, to our knowledge, has attempted to
account for wind speed and direction in detail, but again
for a single pollutant without an explicit residential focus
[14].

In this study, we used LUR techniques and GIS-derived
variables to investigate the varying associations between
multiple traffic indicators and outdoor residential con-
centrations of multiple air pollutants within the urban
neighborhoods in and adjacent to Boston, Massachusetts.
We evaluated a suite of GIS-based traffic indicators, and
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explored meteorology and residential site characteristics
as potential modifiers of the traffic-concentration rela-
tionship, with the goal of understanding the extent to
which traffic-concentration relationships may be different
by pollutant, and ultimately to inform exposure modeling
for future epidemiological analyses focused on urban
cohorts.

Methods
Site selection
This exposure modeling effort was nested within the
Asthma Coalition on Community, Environment and
Social Stress (ACCESS) birth cohort study. Sample homes
were selected to represent variability in traffic densities
across Boston and other proximate neighborhoods. Can-
didate homes were geocoded using U.S. Census TIGRE
files and City of Boston street parcel data, and initial traf-
fic scores for each home were assigned using Massachu-
setts Highway Department (MHD) traffic volume data. As
we anticipated first-order (Gaussian) decay of key pollut-
ants in the first 100–300 meters near major roadways
[15], we opted to create initial traffic scores for site selec-
tion by applying a kernel weighting function to total traf-
fic counts for all road segments within 100 meters of the
home. The kernel function approximates concentration
gradients expected under Gaussian decay, assigning
higher weights to road segments nearer to the home.
Resultant traffic scores were divided into tertiles, and sam-
pling homes were selected to represent the observed range
of traffic scores and neighborhoods. Due to unbalanced
cohort recruitment in the study's early stages, additional
non-cohort participants were recruited to capture a wider
range of traffic scores, and neighborhoods where further
recruitment was anticipated were over-sampled. The spa-
tial distribution of our final sampling cohort is shown in
Figure 1, where homes are shaded by 100-meter kernel-
weighted traffic score, against a surface of the same meas-
ure for each 50-meter cell.

Sampling methods
We measured indoor and outdoor concentrations of
PM2.5, NO2, and EC in two seasons (summer: May
through early October, winter: December through March)
at 44 homes across Boston and nearby urban communi-
ties, though only outdoor measures are included in this
analysis. PM2.5 was measured using the Harvard Personal
Environmental Monitor (PEM) [16], EC using reflectance
analysis of PM2.5 filters, using the M43D Smokestain
Reflectometer (Diffusion Systems Ltd., London UK) and
with the absorption coefficient calculated in accordance
with ISO 9835, as described in [17]. NO2 was analyzed
using Yanagisawa passive filter badges [18], analyzed by
spectrophotometry. Integrated measures for each pollut-
ant were collected for one week per season per home
wherever feasible, in two sessions of 3 to 4 days duration,

averaged to one mean concentration per home per season
for our LUR analysis. 24-hour traffic counts were collected
using the Trax I Plus (JAMAR Technologies, Horsham,
PA), on the highest-density road within 100 m of the
home, during each sampling period when this was feasi-
ble (i.e., not during periods with snow/ice on the ground).
Questionnaires were administered to identify nearby
sources and sampling week activities that may influence
concentrations, as detailed elsewhere [19].

Additional data sources
Traffic Data
Road networks and traffic data were obtained from MHD.
Because different aspects of traffic including density, road-
way configuration, and average vehicle speed may affect
emission rates, pollutant mix, and dispersion, we opted to
create a suite of 25 traffic indicators (Table 1) capturing
varying aspects of traffic. We built raster-based cumulative
density scores for average daily traffic (ADT) counts
within radii of 50 to 500 meters around each home.
Because roadway segments nearer to the home may have
greater influence on concentrations, we also explored
inverse-distance quadratic functions (kernel-weighted
buffers) for the same radii. As traffic counts on smaller res-
idential roads were sparse, we created cumulative density
scores including only larger roads (above 8,500 cars/day),
summary measures of total roadway length within radii of
50 to 500 meters, and the product of roadway length and

100-meter kernel-weighted traffic scores for urban area and sampling homes (Vehicle-miles per day/km2)Figure 1
100-meter kernel-weighted traffic scores for urban 
area and sampling homes (Vehicle-miles per day/
km2).
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average daily traffic counts within 200 meters. We consid-
ered distance to various roadway types, including the
nearest larger road (greater than 8,500 cars/day), major
road (13,000 cars/day), highway, and designated truck
route. Lastly, to explore the influence of major roads on
nearby neighborhoods, we created indicators of its aver-
age daily traffic, diesel traffic (estimated using axle length
by the Trax I Plus), and weighted each by the home's dis-
tance to the road.

We considered other GIS covariates that may be associ-
ated with traffic, represent other pollutant sources, or
modify the observed traffic-concentration relationship.
Block group-level population and area measures were
used to estimate population density. NCLD-50 land use
categories and elevation data were downloaded from the
USGS National Land Cover Dataset (NLCD) and National
Elevation Dataset (NED), respectively.

Temporal variability: Background concentrations and meteorology
With a residential multi-pollutant approach, we were able
to sample at a maximum of three homes per week, creat-
ing the need to account for temporal variability in back-
ground concentrations and meteorology. We estimated
the influence of temporal heterogeneity in our data by
regressing measured concentrations against mean central
site concentrations for specific hours that each sample was
collected. This temporal correction method is similar to
that used elsewhere [20], though annual averages were
not calculated.

Our primary central site concentration data were collected
from the Massachusetts Department of Environmental
Protection (DEP) monitor in the central Roxbury neigh-
borhood (Figure 1). Hourly NO2 is measured at the DEP
monitor using the TECO42c chemiluminescence method.
Hourly PM2.5 is measured using the Met-One BAM with a

PM2.5 SCC beta attenuation method. Notably, EC is meas-
ured using the AE22ER aethelometer for optical absorp-
tion (Magee Scientific, Berkeley CA), as compared with
the reflectance analysis used at our homes. The relation-
ship between aethelometer and reflectance measures of
EC has previously been found to differ by season in Bos-
ton, with aethelometers reading high in the summer
(biased upward by 30% or more) and lower in winter (G.
Allen, personal communication), and recent studies have
shown similar seasonal biases with the aethalometer in
other cold weather settings [21]. Although hourly data
NO2 were available at two additional nearby sites, with
hourly data for EC and PM2.5 available at one additional
site each within the city, we used the Roxbury central site
monitor in our main model given the availability of all
three pollutants. We regressed outdoor PM2.5, EC, and
NO2 concentrations against mean DEP concentrations for
the specific hours that each residential sample was col-
lected. Temporally-adjusted residuals were used for selec-
tion of spatial covariates, and final models were sensitivity
tested against the use of data from other DEP monitors.

Meteorological data were collected from the same central
site, because windspeed and direction could not be meas-
ured at each home during the sampling period. Mean
windspeed and direction were calculated for daytime
hours (6am–9pm) within each sampling period, when we
anticipate significant traffic, our main source of interest.
Further, several wind parameters were created in relation
to traffic sources (i.e., percent of sampling hours when
home is downwind from the nearest road), such that sig-
nificance of the wind term implies source significance.
Lastly, although meteorological texts define 'still winds' as
below 1 m/s [22], we used 2.0 m/s to better dichotomize
our high-windspeed dataset (median = 4.9 m/s). Meteor-
ological factors and other covariates considered as effect

Table 1: Traffic indicators examined for GIS-based LUR models.

Indicator type Indicator Units

Cumulative density scores: Unweighted density within: 50, 100, 200, 300, 500 m buffers Vehicle-meters/per day/m2

Kernel-weighted density: 50, 100, 200, 300, 500 m buffers Vehicle-meters/per day/m2

Density of urban roads (> 8500 cars/day) within 200 m Vehicle-meters/per day/m2

Summary measures: Total roadway length within: 50, 100, 200, 300, 500 m Meters
Total ADT*Length (VMT) within 200 m Vehicle-meters per day

Distance-based measures: Distance to nearest urban road (>8500 cars/day) Meters
To nearest major road (>13,000 cars/day) Meters
To nearest highway (>19,000 cars/day) Meters
To nearest MHD-designated truck route Meters

Characteristics of nearest major road: Average daily traffic (ADT) Vehicles/day
ADT/Distance to major road (Vehicles/day)/m
Diesel fraction Percent (%)
Trucks per day Vehicles/day
Trucks/Distance to major road (Vehicles/day)/m
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modifiers of the traffic-pollution relationship are summa-
rized in Table 2.

Analytic methods and model-building
We built models separately by pollutant, allowing differ-
ent aspects of traffic, meteorology, and site-specific factors
to predict concentrations of different pollutants. We
selected candidate traffic indicators and modifiers against
the temporally-corrected residuals, using nonparametric
univariate correlations (Spearman correlations, p < 0.3) of
concentrations against traffic indicators as our primary
selection method.

Because traffic indicators are highly correlated, however,
we considered cluster analysis as a secondary selection
method; the tree command in R groups observed concen-
trations by applying an impurity criterion to minimize
within-group variances while maximizing between-group
differences. The command compared concentration
groups created using the 25 examined traffic indicators as
predictors, and returned the indicators which best distin-
guished, as a group, high and low pollution locations, and
the most effective binary cut-point for each indicator.
Multivariate models were built using those traffic indica-
tors selected by both correlation and clustering methods.

Using a stepwise forward regression process, we first
included central site data, then traffic indicators, meteor-
ological and site-specific modifiers as interaction terms
with traffic indicators. Finally, we examined the effect of
additional sources (e.g., grilling or smoking noted near
outdoor monitor, block group population density, land
use type, proximity to industry, season). We note that sev-
eral of these indicators may be associated with traffic, cap-
turing some traffic effect. We used the general form of
Equation 1, and a maximum p-value of 0.1 to retain vari-
ables at each stage.

Concentrationijt = β0j + β1j *DEPjt + β2j *Traffici + β3j *Traf-
fici *Modifierit + β4j *Other sourcesit + eijt (1)

Where Concentrationijt is the measured concentration of
pollutant j at location (home) i during sampling period
(time) t. DEPjt is the mean concentration of pollutant j at
the central site during sampling period t. Traffici is the
value of each traffic indicator listed in Table 1, tested sep-
arately in prediction models, at location i. Modifierit is the
value of meteorological or site characteristics altering the
association between traffic indicators and Concentration-

ijt. PM2.5, EC, and DEPjt values for PM2.5 and EC were log-
distributed, and thus transformed prior to covariate selec-
tion and model building in our primary model. NO2 val-
ues were normally distributed, and not transformed.

For residential EC, reflectance values are indicated by filter
absorbance (units of m-1 *10-5). To facilitate interpreta-
tion of our findings, we approximate these values to as
mass units using 0.83 μg/m3/m-1 *10-5, derived from side-
by-side reflectance and quartz fiber samples collected dur-
ing summer in the urban northeastern U.S. [23]. This rela-
tionship may vary by location and season; because we
anticipated that residential EC may display a different
relationship with central site EC by season, we built our
models using non-converted (reflectance) units, and
allowed for season-specific slopes in each model. Along
with the aforementioned concerns about biases with
aethalometer data and seasonal variability in the mass-
absorption relationship, hypothesized sources of EC (i.e.,
wood smoke, home heating fuel) may display greater spa-
tial variability during winter, when lower atmospheric
mixing height may increase their influence.

Sensitivity Analyses
Extensive sensitivity tests were performed on the final
model for each pollutant. Models were examined for sen-
sitivity to the selection of traffic indicator by individually
substituting each traffic indicator from Table 1. Likewise,
we examined the selection of meteorological and site-spe-
cific modifiers by individually substituting other candi-
dates. In each case, the final model was retained based
upon overall model fit (R2).

Table 2: Potential effect modifiers of traffic-concentration relationship

Units

Home characteristics: Obstructed from road Yes/no
Obstructed from major road Yes/no

Sampling period characteristics: Percent of hours downwind from major road Percent (%)
Average windspeed during daytime sampling hours (6am–9pm) m/s
Percent daytime hours with still winds (< 2 m/s) Percent (%)
Percent of weekend sampling days Percent (%)
Floor (monitor height) (Categorical: 1, 2, 3+)
Snow during sampling period Yes/no
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To examine the quality of resolution in our area-level
(raster) GIS data, we considered a range of base cell sizes
(the smallest spatial unit employed in variable creation),
varying in width from 10 to 50 meters. To test the quality
and robustness of our road traffic data, we compared our
traffic indicators derived from MHD data to comparable
indicators using three other data sources. We initially log-
transformed PM2.5 and EC data due to its lognormal con-
centration distribution, and tested the effect of this trans-
formation. To examine the potential for residual spatial
confounding using our central-site monitor data, we eval-
uated the use of other Boston-area DEP monitors. To
assess residual seasonality not captured by DEP data, we
tested a categorical season term and seasonally-varying
slopes associating home data to the central site for all pol-
lutants. Finally, we examined the robustness of each
model to within-site autocorrelation owing to multiple
measures at each site, using random effects by household.

All traffic and land use variables were created in ArcGIS 9,
clustering analyses were performed using the tree com-
mand in R version 2.2.0, and model-building in SAS ver-
sion 9.1.

Results
We conducted 66 sampling sessions in total, consisting of
86 three-to-four day measurements in 44 homes. Fifty-
one measurements were taken in 36 homes during sum-
mer months, and 35 measurements were taken in 25
homes during winter months. Table 3 summarizes the
within-season average concentrations by sampling session
for each pollutant. PM2.5 and EC were significantly corre-
lated during winter and summer (p < 0.05), while EC and
NO2 were marginally correlated in both seasons, and
PM2.5 and NO2 were not.

Pollutant-specific modeling results
Outdoor PM2.5 was highly correlated with central-site
PM2.5 (R2 = 0.68), as suggested in Figure 2, indicating a
predominance of temporal variability and relative spatial
homogeneity in PM2.5 across the urban area. In multivari-
ate regressions including central site data, the best traffic
indicator was total roadway length within 100 meters of

the home (Table 4). Final multivariate model results indi-
cate that the traffic-PM2.5 relationship was not signifi-
cantly altered by any of our candidate modifiers. Other
combustion sources (smoking or grilling) and population
density significantly contributed to concentrations (over-
all R2 = 0.76).

EC shows relatively poor associations with central site
data overall (R2 = 0.08), though this is partly attributable
to seasonal differences in the relationship (Figure 3), with
varying slopes and stronger correlations during summer
(Spearman r = 0.66) than winter (r = 0.37). In the final
multivariate model (R2 = 0.52), EC was best predicted by
total roadway length within 200 meters of the home, and
the association between EC and traffic was increased
under low wind speed conditions. During summer
months, residential EC concentrations were somewhat
lower and displayed stronger associations with central site
data. Approximately 30% of the variability in EC was
explained by temporal terms, and 14% by the traffic term
(spatial component). The interaction of traffic with hours
of low wind speed, incorporating both spatial and tempo-
ral variance, accounted for an additional 8%.

NO2 was weakly associated with central site concentra-
tions (R2 = 0.21), suggesting significant spatial heteroge-
neity within urban residential areas (Figure 4). The final
multivariate model (R2 = 0.56) includes total roadway
length within 50 meters of the home, significantly attenu-
ated by an obstruction (i.e., building) between the moni-
tor and nearest major road. Residential NO2
concentrations were higher during summer months, and
positively associated with population density (Table 4).
Spatial terms (traffic, obstruction between the monitor
and nearest major road, and population density) together
account for approximately 23% of NO2variability. Tem-
poral terms (central site, summer months) account for
about 34%.

Sensitivity analyses
Selection of traffic indicator
Sensitivity analyses indicate that other traffic indicators
could not be substituted to create a comparable model for

Table 3: Within-season average outdoor concentrations at homes and central-site monitor

Overall Summer Winter
Pollutant Location N Mean (SD) Median N Mean (SD) Median N Mean (SD) Median

PM2.5 Outdoor 59 13.9 (5.0) 12.5 35 15.1 (5.7) 13.8 24 12.2 (3.1) 13.8
(μg/m3) Central Site 59 15.4 (6.1) 14.6 35 17.0 (7.1) 14.9 24 13.1 (3.4) 12.9

EC Outdoor 58 0.52 (0.41) 0.46 34 0.51 (0.51) 0.39 24 0.54 (0.18) 0.56
(μg/m3) Central Site 58 0.86 (0.34) 0.83 34 1.01 (0.31) 1.01 24 0.65 (0.27) 0.61

NO2 Outdoor 52 17.2 (6.0) 16.8 36 17.7 (6.4) 17.3 16 16.3 (4.9) 15.5
(ppb) Central Site 52 18.4 (3.9) 17.9 36 17.3 (3.5) 18.0 16 21.0 (3.4) 21.3
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PM2.5 (Table 5) For EC (Table 6), diesel-based measures
can explain more variability, with R2 values of approxi-
mately 0.54, but were available for only a subset of loca-
tions (n = 34) and thus were not considered robust for the
primary model. For the full cohort, no indicator was
exchangeable with roadway length within 200 meters of
the home. In addition, the interaction term of traffic mod-
ified by low wind speeds remained significant in several
cases where the main effect of traffic did not maintain sig-
nificance. For NO2, sensitivity tests (Table 7) support the
finding that shorter buffer lengths were most effective.
Larger buffer lengths did not produce a comparable
model, but kernel-weighted traffic density within 50
meters of the home could be substituted effectively, as
could unweighted cumulative density within 100 meters.

Accuracy of traffic data
To validate raster-based traffic indicators, we considered a
range of base cell sizes from 10 to 50 meters square, bear-
ing little difference on traffic indicator values compared to
our default 25 meter cell size. Given concerns about data
quality, where possible we verified MHD counts against
traffic data obtained from the Massachusetts Executive
Office of Transportation, ESRI Business Analyst, and our
traffic counts collected outside cohort homes using the
Jamar Trax I device. Correlations across traffic sources
were generally above 0.7.

Selection of central site monitor
We considered several alternatives to the use of the
Roxbury central site monitor concentrations for temporal
correction, including using the other available urban

Scatter plots of outdoor concentrations vs. central site con-centration averages during sampling periodsFigure 3
Scatter plots of outdoor concentrations vs. central 
site concentration averages during sampling periods. 
EC at homes vs. central site (μg/m3); one influential point 
removed each season.

Table 4: Final model results for three pollutants

ln(PM2.5) (μg/m3) ln(EC) (m-1*10-5) NO2 (ppb)
Predictor Type Model β (p-value) Sequential 

R2
Model β (p-value) Sequential 

R2
Model β (p-value) Sequential 

R2

Intercept 0.205 (.32) -- -0.907 
(<.0001)

-- -12.50 
(.009)

--

Central site 
Concentration

ln (Central Site 
[PM2.5])

0.776 (<.0001) .68 ln 
(Central site 
[EC])

0.103 (.59) .03 Central site 
[NO2]

1.06 (<.0001) .21

ln (Central site 
[EC]) * warmer 
season

0.82 (.004) .26

Traffic 
Indicator

Roadway 
Length in 100 m

1.48*10-4 (.02) .70 Roadway Length 
in 200 m

1.10 * 10-4 

(.01)
.40 Roadway 

Length in 50 m
0.0144 (.002) .22

Traffic 
Indicator* 
Modifier

N/A N/A N/A Roadway Length 
in 200 m × % 
Hours of Still 
Winds

4.38 *10-4 (.02) .48 Roadway 
Length in 50 m 
× Obstructed 
Major Rd

-0.0094 (.005) .31

Other Sources/
Land Use

Smoking or 
grilling

0.156 (.01) .73 Warmer Season -0.268 (.057) .52 Warmer 
Season

4.93 (.001) .44

Population 
Density

9.24*10-6 (.01) .76 Population 
Density

4.01*10-4 

(.001)
.56

Scatter plots of outdoor concentrations vs. central site con-centration averages during sampling periodsFigure 2
Scatter plots of outdoor concentrations vs. central 
site concentration averages during sampling periods. 
PM2.5 at homes vs. central site (μg/m3).
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monitors individually, the average concentration from all
urban monitors available during each sampling period,
and the mean concentration at a background monitor
south of Boston (available for summer months only). No
alternative to the Roxbury central site sampling period
mean explained greater variability in concentrations or
significantly altered traffic-pollution relationships in mul-
tivariate models.

Selection of meteorological and site-specific modifiers for EC and 
NO2s
All EC models showed a significant, positive effect of low
wind speeds on the traffic-pollution relationship. Sensi-
tivity analyses indicated that other wind variables (mean
daytime windspeed, percent of day downwind from road)
were significant and may be substituted for percent of low
wind speed hours, losing only marginal explanatory
power (R2 = 0.52 and 0.49, respectively). The similar find-
ings for windspeed and direction may be expected, as

windspeed and direction at our central site were highly
correlated, with higher windspeeds from the west (data
not shown).

For NO2, no other modifier could replace obstruction
between the monitor and nearest major road in the final
model. Because presence of an obstruction could theoret-
ically proxy for distance to nearest major road, we
replaced the term with distance to major road, and found
highly non-significant results, indicating that this was not
likely the case.

Log-transformation of PM2.5 and EC data
The selection of the 100-meter roadway length term and
other predictors for the PM2.5 model was not dependent
on log transformation. Using un-transformed PM2.5, we
achieve an R2 of 0.73, and retain significance in all predic-
tors. For un-transformed EC, the same traffic term and all
other predictors retained significance, with an R2 of 0.51.

Inclusion of a categorical variable for season
Because the season term may be extraneous in models
including temporal data from a central site, we explored
the effect of removing this term from the final EC and
NO2 models. For EC, removing the season term caused the
central site monitor estimate to drop by half and fall out
of significance, while the effect of low wind speed
increased by almost 50%, and overall model fit declined.
Because of this decline in overall explanatory power when
removed and the interpretability of the term given meth-
odological aspects of EC concentration estimation, we
opted to maintain the season term and season-specific
slopes on the central site monitor term in the final model.

For NO2, dropping the season term decreased the effect of
the central site monitor by approximately 50%, but did
not affect overall model fit or other parameters. Thus,
although NO2 is higher at our residences during summer
months, the effect is captured in part by the central site

Table 5: Sensitivity analyses including best predictor in each category, all summary measures.

Indicator Type Traffic Indicator Estimate(s), p-value(s) from 
multivariate model

Model R2

Base model (w/out traffic) R2 = .74
Cumulative Density scores Unweighted 500 m traffic density (n = 57) β1 = 4.74*10-4 (.17) R2 = .75
Summary Measures Total roadway length:

50 meters (n = 57) β1 = 1.31*10-4 (.35) R2 = .74
100 meters (n = 57) β1 = 1.48*10-4(.02) R2= .76
200 meters (n = 57) β1 = 1.42*10-5 (.56) R2 = .74
300 meters (n = 57) β1 = 5.54*10-6 (.57) R2 = .74

Distance-based measures Distance to nearest designated truck route 
(n = 57)

β1 = 1.80*10-5 (.62) R2 = .74

Characteristics of nearest major 
road

Average daily traffic (ADT) (n = 57) β1 = -3.04*10-6 (.25) R2 = .74

Final model bolded; models with diesel-based terms italicized. Traffic indicators for PM2.5

Scatter plots of outdoor concentrations vs. central site con-centration averages during sampling periodsFigure 4
Scatter plots of outdoor concentrations vs. central 
site concentration averages during sampling periods. 
NO2 at homes vs. central site (ppb).
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monitor; because the term did not significantly alter other
parameters, we opted to leave it in the final model.
Finally, we tested the addition of a season term to the
PM2.5 model, and found no effect on the central site term
or overall fit, although the influence of other combustion
sources (i.e., smoking or grilling) was increased by

approximately 35%, indicating possible seasonal differ-
ences in source activities. Because traffic is our main
source of interest, however, and because this result did not
improve overall fit or alter the observed influence of traf-
fic, we opted to maintain the more parsimonious original
PM2.5 model.

Table 7: Sensitivity analyses including best predictor in each category, all summary measures.

Indicator Type Traffic Indicator Estimate(s), p-value(s) from 
multivariate model

Model R2

Null model R2 = .39
Cumulative density scores: Unweighted traffic density in 100 m

* Obs nearest Major Road (n = 50)
β1 = 0.055 (.004)
β2 = -0.051 (.004)

R2 = .55

Kernel-weighted density in 50 m
* Obstructed (n = 50)

β1 = 0.034 (.02)
β2 = -0.056 (.002)

R2 = .55

Density of urban roads (>8500 cars/day) in 200 m
* Obstructed (n = 50)

β1 = 589.4 (.049)
β2 = -760.9 (.0095)

R2 = .52

Summary measures: Total roadway length within:
50 meters
* Obstructed (n = 50)

β1 = 0.0144 (<.0001)
β2 = -0.0094 (.005)

R2 = .56

100 meters
* Obstructed (n = 50)

β1 = 0.0022 (.34)
β2 = -0.0042 (.005)

R2 = .54

200 meters
* Obstructed (n = 50)

β1 = 9.28*10-4 (.22)
β2 = -1.25*10-3 (.008)

R2 = .52

300 meters
* Obstructed (n = 50)

β1 = 2.31*10-4 (.55)
β2 = -6.65*10-4 (.0095)

R2 = .50

Vehicle Miles Traveled in 200 m
* Obstructed (n = 50)

β1 = 1*10-7 (.21)
β2 = -1*10-7 (.10)

R2 = .47

Distance-based measures: To nearest highway (>19,000/day)
* Obstructed (n = 50)

β1= 0.0176 (.12)
β2 = -0.0195 (.07)

R2 = .50

Characteristics of nearest 
major road:

Trucks per day on nearest major road * Obstructed (n = 34) β1 = .0061 (.01)
β2 = .00596 (.01)

R2 = .59

Final model bolded; models with diesel-based terms italicized. Traffic indicators for NO2.

Table 6: Sensitivity analyses including best predictor in each category, all summary measures.

Indicator Type Traffic Indicator Estimate(s), p-value(s) from 
multivariate model

Model R2

Base model R2 = .31
Cumulative density scores: Unweighted 500 m buffer (n = 54) β1 = 5.39*10-4 (.49)

β2 = 5.63*10-3 (.41)
R2 = .39

Summary measures: Total roadway length within:
50 meters
*Still Winds (n = 54)

β1 = 3.94*10-4 (.18)
β2 = 4.08*10-3 (.01)

R2 = .41

100 meters
*Still Winds (n = 54)

β1 = 2.15*10-4 (.14)
β2 = 1.27*10-3 (.03)

R2 = .47

200 meters
*Still Winds (n = 54)

β1 = 1.10*10-4(.01)
β2 = 4.38*10-4(.02)

R2= .52

300 meters
*Still Winds (n = 54)

β1 = 2.99*10-5 (.11
β2 = 2.01*10-4 (.04)

R2 = .48

Distance-based measures: To nearest highway (>19,000 cars/day)
* Still Winds (n = 54)

β1 = 0.452 (.06)
β2 = 0.549 (.04)

R2 = .45

Characteristics of Nearest major road: Diesel fraction
* Still Winds (n = 34)

β1 = -1.06 (.02)
β2 = 34.6 (.02)

R2= .54

Trucks per day
* Still Winds (n = 34)

β1 = -7.41*10-5(.06)
β2 = 3.51*10-3(.02)

R2= .54

Trucks/Distance to major road
* Still Winds (n = 34)

β1 = -6.31*10-3(.03)
β2 = s0.119 (.05)

R2= .54

Final model bolded; models with diesel-based terms italicized. Traffic indicators for EC.
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Robustness to within-site autocorrelation
For all pollutants, because the majority of homes were
monitored in two seasons, we examined the effect of
within-site autocorrelation using random effects by
household. Autocorrelation by site did not influence
model fit or parameter estimates for any model.

Finally, a one-at-a-time exclusion cross-validation was
performed to assess the internal consistency of model
results. The Spearman correlation between estimated and
measured log PM2.5 was 0.80, 0.66 for log EC, and 0.66 for
NO2 (p < .0001 in all cases), indicating strong associations
between predicted and actual values, indicating accepta-
ble internal validity.

Discussion
Working strictly within urban neighborhoods and
employing a multi-pollutant approach, our study offers
several findings useful to future research exploring and
modeling air pollution exposures for epidemiological
purposes. These observations broadly apply to four areas:
(1) urban residential variability in traffic densities and
pollution concentrations, (2) fraction of urban residential
pollution that is attributable to traffic, (3) selection of
traffic indicators for residential exposure estimation, and
(4) modification of traffic-concentration relationships by
site characteristics and meteorology.

(1) Urban residential variability in traffic densities and 
pollution concentrations
We found significantly greater variability and stronger
relationships with local traffic for EC and NO2 than for
PM2.5, consistent with prior literature [24,25], and which
corroborates evidence that PM2.5 patterns are largely
regional in nature for the Eastern U.S. [26,27]. We found
somewhat weaker correlations across the three pollutants
than have been shown in prior European studies [1],
potentially because of our focus within urban neighbor-
hoods relatively proximate to one another, while most
prior intra-urban studies have actually examined metro-
politan regions.

Though we found significant variability in traffic density
across cohort homes, traffic varied somewhat less within
residential neighborhoods than across the entire urban
core, as shown in Figure 1. Across the entire urban core,
100-meter kernel-weighted traffic scores ranged from 0 to
3,305 vehicle miles traveled (VMT) per m2 per day; at
cohort homes, this measure ranged from 5.8 to 168 VMT/
m2-day. This difference is driven largely by major high-
ways, alongside which relatively few homes are located,
but this observation may be important for exposure esti-
mation; many models are derived from concentration
data near major roads, which may inaccurately reflect traf-
fic-concentration associations at the lower end.

(2) Fraction of urban residential pollution that is 
attributable to traffic
Using the traffic-pollution relationship observed across
our sampling sites, we can estimate the portion of residen-
tial concentrations that are attributable to traffic. For
PM2.5, the mean 100-meter summary roadway length of
1,110 meters accounted for a marginal contribution of 1.2
μg/m3, or 9.7% of predicted PM2.5. Applying our predic-
tive models with mean values for all terms, mean pre-
dicted concentration is 13.2 μg/m3; an increase of one
standard deviation in roadway length alone (371 meters)
increases concentrations to 13.9 μg/m3. Population den-
sity, which likely captures some traffic-related influence,
adds 1.1 μg/m3 on average. Using non-transformed PM2.5,
the predicted combined traffic contribution is somewhat
larger (2.6 μg/m3).

For EC, the mean 200-meter buffer roadway length of
3,560 meters accounted for approximately 0.17 μg/m3, or
36% of total predicted EC. Increasing roadway length
alone by one standard deviation (1,156 meters), with all
other parameters at their mean values, increases predic-
tions from 0.47 to 0.54 μg/m3. Using non-transformed EC
concentrations, total predicted traffic contributions are
somewhat larger (0.39 μg/m3). We observed a gradient of
almost 1 μg/m3 in EC across sampled homes before cor-
recting for temporal variability, which is relatively small
compared to that observed in European studies (approxi-
mately 10 μg/m3), as expected given the prevalence of die-
sel passenger vehicles in Europe [28].

Modeled traffic terms accounted for approximately 2.8
ppb, or 21% of modeled NO2. A mean 50-meter buffer
roadway length of 441 meters, with mean values for other
terms, predicts a concentration of 17.8 ppb. A one stand-
ard deviation increase (179 meters) increases concentra-
tions to 18.9 ppb. The range of 50-meter roadway lengths
observed predicts a NO2 range of 15.4 to 20.9 ppb. Popu-
lation density, likely capturing some traffic effect, and
accounts for 4.4 ppb on average. The full range of NO2
variability observed (including spatial and temporal com-
ponents) was approximately 28 ppb (53 μg/m3), on the
order of exposures associated elsewhere with increased
wheeze and cough among children [29].

(3) Selection of traffic indicators
Total roadway length within varying buffer radii provided
useful traffic indicators for each pollutant. Because actual
traffic counts for residential roads are generally sparse,
length measures provided more stable traffic indicators in
these areas than do ADT-based estimates. There is also dif-
ferential bias in traffic count accuracy by roadway size in
the traffic data available for many cities; actual traffic
counts are generally collected on a regular basis for high-
Page 10 of 14
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ways and major roads, and rough estimates are created for
smaller residential roads.

While correlated, total roadway lengths within various
buffers were not interchangeable in predictive models.
The 100-meter buffer length effective for PM2.5 coincides
with our original buffer radius created for site selection,
selected because maximum declines in particle concentra-
tions occur in the first 100–300 meters alongside major
roadways, dependent on particle size distributions and
wind characteristics. We found a larger buffer of 200 m to
be most predictive for EC; a meta-analysis of the literature
[30] found buffers ranging from 50–250 meters across
studies. The slightly higher value for EC than for PM2.5
could be related to differential contributions of back-
ground and related complications, the relative lack of die-
sel sources and the likelihood of such sources on major
roads (indicated by the significance of diesel terms related
to nearest major road), or to the smaller particle size dis-
tribution anticipated for EC. For NO2, shorter buffer
lengths of 50 meters were most effective. Secondary for-
mation of NO2 from NO might suggest longer buffer
lengths, with one LUR study showing 300 m buffers to be
effective [31] and one meta-analysis [30] indicating values
of 200–500 m across studies. Other data, however, sug-
gests that NOx concentrations can decline up to 60 per-
cent, and NO2 by 30 percent, within the first 50 meters
from a roadway [12]. More generally, the precise distance-
concentration decay relationship for NO2 varies by set-
ting, as dispersion, dilution, and chemical transformation
are affected by the local pollution mix, wind characteris-
tics, and meteorology.

Sensitivity tests suggest that diesel-based indicators may
better predict EC and possibly NO2. Diesel influence
raises a critical difference between traffic modeling in
North America and Europe, as diesel vehicles constitute a
smaller and poorly measured fraction of traffic in North
American residential areas. Here, we rely on axle-length
estimates from our traffic counter on one major road near
the home, to approximate vehicle type (i.e., CNG-pow-
ered buses, for example, would be categorized here as
"diesel"). In Europe, the higher prevalence of diesel pas-
senger vehicles implies that total traffic may itself act as a
diesel marker, providing more stable predictors for EC.

(4) Modification of traffic-concentration relationships by 
site characteristics and meteorology
We found that accurate exposure modeling near urban
residences required some consideration of site characteris-
tics, such as population density and obstructions, which
explained significant variability in concentrations and
altered traffic-concentration associations. Population
density, significant for PM2.5 and NO2, may proxy either
for other residential sources or for traffic, and may indi-

cate higher per-mile emission rates from 'stop-and-go'
traffic in denser residential neighborhoods. We expected
obstruction to modify PM or EC, in keeping with recent
findings suggesting that roadside barriers reduce PM con-
centrations [32]. Though we did not expect to find this
effect for a gaseous pollutant such as NO2, this result is
supported by recent evidence that residential NO2 concen-
trations differed significantly depending on whether the
home faced onto the courtyard or street, after accounting
for distance to road [33]. Our findings may also be in part
related to our passive sampling approach (as an obstruc-
tion could reduce the face velocity on the sampler).

Limitations
Although our models are physically interpretable and
explain significant variability, there are some limitations
to our analysis. Our small sample size may be a limitation
in model-building, though sensitivity analyses show our
findings to be robust. Similarly, our multi-pollutant
approach limited our sampling design to sample at only a
few homes simultaneously and distributing sampling ses-
sions over the course of a season, such that samples incor-
porate both temporal and spatial variability. Measuring at
a large number of homes simultaneously, however, is gen-
erally infeasible for equipment-intensive multi-pollutant
sampling designs, especially given interest in both the
indoor and outdoor environment. In addition, long-term
residential exposure estimation can benefit from within-
season temporal variability, which can not be obtained
from short-term simultaneous sampling campaigns. Fur-
ther, the influence of meteorological covariates may be
under-estimated using such approaches, and are needed
for long-term exposure estimation models. The central
site monitor used to account for temporal heterogeneity
may capture some local-source component as well, and
for this reason we opted to use only one central site mon-
itor with the most complete data coverage for all three
pollutants, to avoid confounding spatial and temporal
variability during periods when some sites were unavaila-
ble. In addition, we chose to maintain the central site term
in our final models, rather than predicting the temporally-
corrected concentration residual, and included other tem-
poral terms such as season and meteorological parame-
ters.

Ultimately, most GIS-based residential exposure models
are intended to allow exposure estimation across large
cohorts, and thus we rely on readily-created GIS-based
traffic indicators generally available across urban neigh-
borhoods, such as total roadway length measures. Several
predictors in our models, however, such as obstruction
between the home and nearest major road, are effectively
correction factors for the restrictions associated with resi-
dential monitoring – i.e. samplers often need be set up
behind the buildings, wherever power sources are availa-
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ble, on a porch where smoking or grilling also occurred,
or some such non-ideal location. These parameters may
not be appropriate for extrapolation, as they may not
reflect mean concentrations near the home, but are
important to correctly interpreting residential data.

There are a number of issues related to LUR studies which
limit model generalizability. First, LUR model results are
highly dependent upon the quality of spatial data availa-
ble. Here, for example, total roadway length produced the
strongest concentration estimates in our urban neighbor-
hoods. In areas with better traffic data, however, indica-
tors incorporating traffic density may fare better. Second,
spatial variables can have different meaning in different
settings; in rural areas, for example, proximity to major
roads may be correlated with proximity to parking lots,
industrial areas, and other sources, which is less likely in
urban areas. Similarly, overall traffic counts in Europe can
provide better estimates for EC modeling due to the
higher prevalence of diesel vehicles. Higher emissions of
NO2 and total particle mass from diesel engines suggests
that we may expect higher R2's on European LUR models
from intra-urban variability in traffic-related pollutants
than in the US.

These issues of generalizability continue to challenge the
search for "causal agents" in the association between traf-
fic density and respiratory and cardiovascular illness.
Because different traffic indicators have been shown to
predict concentrations (and illness) in different regions, it
is difficult to identify the specific spatial characteristics of
unidentified causal agents. We maintain, however, that
because the chemical and physical properties among var-
ious pollutants lead to differing rates of decay and depo-
sition near roadways [15,30], predictive models should be
built and compared for multiple pollutants in epidemio-
logical studies of the effect of traffic exposure on health.
Further, because pollutants more refined than PM2.5 are
still complex (e.g., EC, a subset of PM2.5, may have VOCs
and metals bound to its surface), there remains a need for
spatial models investigating distributions of specific PM2.5
constituents to evaluate their relationship with health out-
comes. Finally, most urban residents of North American
cities spend the majority of their time indoors, further
complicating efforts to define causal pollutants in the traf-
fic-health relationship. The models presented here do not
address infiltration or indoor residential environments
directly, but do facilitate estimation of indoor exposures
when combined with home characteristics such as build-
ing type [19]. Finally, measurement error is differential
across the three pollutants modeled here, as evidenced by
their varying R2's, which complicates comparisons across
predictive models for different pollutants in epidemiolog-
ical studies. This issue deserves greater attention, as such

comparisons across pollutant-specific models will be
important in identifying causal agents.

Our results provide some insight to researchers working to
elucidate intra-urban residential exposures for long-term
epidemiological analyses. First, the issue of distinguishing
temporal from spatial variability is a significant difficulty
for multi-pollutant sampling designs; when only a small
number of homes can be sampled simultaneously, there
is not adequate variability observed within any time
period to distinguish the temporal from spatial effects. To
this end, we suggest, in cities lacking a year-round rural
background monitor for all pollutants of interest, a fixed-
site monitor (using identical methods to those at the
homes) in a less heavily-trafficked area would be useful to
capture background concentrations and long-range trans-
port. We also suggest exploration of sampling designs
which maximize temporal overlap; for example, a system-
atically-staggered sampling with a predictable amount of
overlap at different homes might allow for a simplified
temporal correction term. This design would retain intra-
season variability as well, which is lost in the shorter-term
simultaneous sampling campaigns. However, such theo-
retically optimal sampling designs should be approached
realistically, with the recognition that residential sam-
pling will require some amount of visit rescheduling
(especially for a cohort such as ours, with women who are
pregnant or with young children). Finally, in selecting
sampling locations, certain site characteristics potentially
impeding accurate sample collection should be consid-
ered (e.g., construction, lack of secure outdoor space or
power outlets), and incorporated into previous methods
for optimizing concentration variability, such as that out-
lined in [12].

Conclusion
Our analysis explored a range of GIS-based traffic indica-
tors to capture small-scale variability in multiple air pol-
lutants within dense urban neighborhoods. Because our
measures were collected outside residential homes rather
than at roadside locations, our measures likely reflect
more realistic exposures to urban residents. The resultant
sampling design, however, raised a number of methodo-
logical challenges, including the need to account for spa-
tial and temporal variability in measures collected during
different weeks, and the need to account for home site
characteristics and other residential sources which may
obscure the true traffic-concentration relationship.

We found that traffic indicators not reliant on ADT esti-
mates (i.e. roadway lengths) provided more stable predic-
tors in the residential settings in our study. As shown
elsewhere, greater spatial variability was observed in NO2
and EC than in PM2.5, and LUR techniques worked well
within the urban setting to capture pollutant variability,
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although parameters useful at the metropolitan scale (e.g.,
land use type) displayed low variability and limited pre-
dictive power. Finally, the relationship between traffic and
pollution concentrations was significantly modified by
meteorological factors and site characteristics, indicating
the importance of incorporating small-scale spatial and
temporal predictors to accurately capture exposure varia-
bility in urban residential settings.
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