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Abstract
Background: This study intended to investigate whether residence in areas polluted by heavy
industry, waste incineration, a high density of traffic and housing or intensive use of pesticides, could
contribute to the high incidence of cancer observed in Flanders.

Methods: Subjects were 1583 residents aged 50–65 from 9 areas with different types of pollution.
Cadmium, lead, p,p'-DDE, hexachlorobenzene, PCBs and dioxin-like activity (Calux test) were
measured in blood, and cadmium, t,t'-muconic acid and 1-hydroxypyrene in urine. Effect
biomarkers were prostate specific antigen, carcinoembryonic antigen and p53 protein serum levels,
number of micronuclei per 1000 binucleated peripheral blood cells, DNA damage (comet assay) in
peripheral blood cells and 8-hydroxy-deoxyguanosine in urine. Confounding factors were taken
into account.

Results: Overall significant differences between areas were found for carcinoembryonic antigen,
micronuclei, 8-hydroxy-deoxyguanosine and DNA damage. Compared to a rural area with mainly
fruit production, effect biomarkers were often significantly elevated around waste incinerators, in
the cities of Antwerp and Ghent, in industrial areas and also in other rural areas. Within an
industrial area DNA strand break levels were almost three times higher close to industrial
installations than 5 kilometres upwind of the main industrial installations (p < 0.0001). Positive
exposure-effect relationships were found for carcinoembryonic antigen (urinary cadmium, t,t'-
muconic acid, 1-hydroxypyrene and blood lead), micronuclei (PCB118), DNA damage (PCB118)
and 8-hydroxy-deoxyguanosine (t,t'-muconic acid, 1-hydroxypyrene). Also, we found significant
associations between values of PSA above the p90 and higher values of urinary cadmium, between
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values of p53 above the p90 and higher serum levels of p,p'-DDE, hexachlorobenzene and marker
PCBs (PCB 138, 153 and 180) and between serum levels of p,p'-DDE above the p90 and higher
serum values of carcinoembryonic antigen. Significant associations were also found between effect
biomarkers and occupational or lifestyle parameters.

Conclusion: Levels of internal exposure, and residence near waste incinerators, in cities, or close
to important industries, but not in areas with intensive use of pesticides, showed positive
correlations with biomarkers associated with carcinogenesis and thus probably contribute to risk
of cancer. In some rural areas, the levels of these biomarkers were not lower than in the rest of
Flanders.

Background
Flanders is one of the most densely populated areas in
Europe, with intensive traffic, industrial activities and
intensive farming close to habitation. The pilot Flemish
Environment and Health Survey (FLEHS) showed differ-
ences in internal exposure to pollutants in function of area
of residence and indicated that small differences in pollut-
ant levels were associated with observable differences in
effects [1-4]. These results entailed a larger-scale, five year
(2002–2006) biomonitoring program on neonates, ado-
lescents and older adults by the Flemish Centre for Envi-
ronment and Health.

This program comprised measurements of internal expo-
sure on each of these age groups. Concerning the
neonates, follow-up studies concerning neuropsychic
development, asthma and allergy were performed. Con-
cerning the adolescents, effect biomonitoring comprised
measurements of hormone levels in boys and sexual mat-
uration of boys and girls. For adults, effect biomonitoring
entailed genotoxic tests and measurements of tumor asso-
ciated protein levels (reported in the present paper) and
also measurements of the expression of selected genes.
Also, for both adolescents and older adults a study was
performed on the relationship between carcinogenesis-
related biological effects and 36 polymorphisms in 23
genes involved in xenobiotic metabolism, DNA repair and
oxidative stress. This biomonitoring program (2002–
2006) already resulted in several publications: internal
exposure to pollutants in adolescents was described by
Schroijen et al. [5]; dietary exposure to dioxin-like com-
pounds in adolescents, mothers aged 18 to 44 years, and
adults aged 50 to 65 years was reported by Bilau et al. [6];
the association of thyroid hormone concentrations with
levels of organochlorine compounds in cord blood of
neonates was reported by Maervoet et al. [7]. A detailed
report on the internal exposure to pollutants of the adults
participating in the study reported here will be published
elsewhere. All public information on the project, as well
as an overview of these data on internal exposure, is
already available on a website [8]. Several publications on
yet unpublished results are in preparation.

Here we report our observations on cancer-related mark-
ers of biological effects in 50 to 65 year old adults. Because
of the important role of somatic mutations in carcinogen-
esis [9], we included effect biomarkers for genotoxicity:
oxidative DNA damage measured through a metabolite in
the urine (8-hydroxy-deoxyguanosine), DNA strand
breaks (comet assay), and micronuclei measured in
peripheral blood cells. As we did previously [4], we also
included tumor-associated protein levels measured in
blood. In our present study we measured prostate-specific
antigen (PSA), carcinoembryonic antigen (CEA) and p53
levels (p53) in serum. During the long latency period after
initiation of carcinogenesis and/or under the impact of
tumor promoters, some cells in the body might express
certain aspects of the tumoral phenotype, which may
result in the release, in body fluids, of macromolecules
associated with this phenotype. An increased concentra-
tion of such molecules in body fluids might, to some
extent, reflect a higher exposure to cancer-inducing or can-
cer-promoting agents [10-14] or an increased risk of can-
cer [15-22]. Using these biomarkers associated with
carcinogenesis or with risk of cancer we aimed at investi-
gating whether residence in Flemish areas with specific
types and levels of pollution, in particular stemming from
heavy industry, waste incineration, a high density of traf-
fic and housing or intensive use of pesticides, could con-
tribute to cancer risk.

Our project also intended to test the hypothesis that low
levels (such as these occurring in the general population
in Flanders) of internal exposure to pollutants known or
suspected to cause cancer were associated with increases
in levels of oxidative DNA damage, of DNA strand breaks,
of micronuclei or of tumor associated proteins.

Methods
Selection of study areas
As areas with a high level of pollution stemming from
heavy industry, the port areas of Antwerp ('Antwerp port')
and Ghent ('Ghent port'), and the 'Albert canal' and
'Olen' industrial basins were chosen. At the start of the
project the ports of Antwerp and Ghent were considered
together as one industrial zone, but in view of differences
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in type of industry and in view of the results obtained (e.g.
for the adolescents [5]), we thought it adequate to con-
sider the results for the ports separately. 'Antwerp port' is
an important industrial site with huge petrochemical
industries, chemical and plastic industry and production
of pesticides (n = 163 adults between 50–65 years old
recruited in this area). However, only part of the partici-
pants from 'Antwerp port', such as those from Burcht,
resided in zones that have an important exposure to
industrial emissions, whereas others, from the municipal-
ity of Beveren, resided at a distance of about 6 kilometers
to the west of the main industrial installations. 'Ghent
port' has mainly metallurgic industries, however, all adult
participants (n = 36) resided in the municipality of
Evergem at the south west of the main industrial installa-
tions. 'Albert canal' is an industrial zone with chemical
and plastic industries and production of electricity amidst
rural areas (n = 196). 'Olen' is an industrial zone with a
large non-ferrous smelter, and chemical, plastic and auto-
mobile industry amidst rural areas (n = 203). As areas
with a high level of pollution pressure stemming from a
high density of traffic and housing, the cities of Antwerp
and Ghent were chosen. Antwerp, the largest city in Flan-
ders, is an industrial city with 404,000 inhabitants and
very dense traffic (n = 197). Ghent, the second largest city
in Flanders, is a smaller industrial city with 213,000
inhabitants (n = 198). As an area with a high level of pol-
lution pressure stemming from intensive use of pesticides,
the 'fruit area' around Sint-Truiden was chosen, compris-
ing a rural region with intensive apple or pear cultivation
(n = 193). As area with a high level of pollution pressure
stemming from waste incineration, neighborhoods close
to waste incinerators in 6 municipalities, spread out over
the whole of Flanders (n = 198) were chosen. These neigh-
borhoods comprised a limited area, with a mean surface
of 6.2 km2 mainly under the wind of a waste incinerator.
For comparison we included 'rural areas'. These rural areas
are, in Flanders, certainly not devoid of environmental
pollution and might (see discussion) even show some
higher exposures [5,23] due to certain local habits such as
burning waste, inappropriate use of pesticides and con-
sumption of self-grown food [24]. However, with a lower
population density, less traffic and no local heavy indus-
try they constitute an interesting point of comparison. In
our study 'rural areas' comprised 24 municipalities,
spread out over 9 contiguous areas in the western half of
Flanders with no highways and no industries reported in
the emission inventory of the Flemish environmental pro-
tection agency (n = 199).

Table 1 summarizes characteristics, including some emis-
sion data, of the different study areas, and figure 1 shows
their position in Flanders. The surface of the studied area
is 3,036 km2, corresponding to 22% of the total surface of
Flanders (13,521 km2). The 65 selected municipalities

correspond to 20% of the total Flemish municipalities.
Except for 'rural Flanders' and for 'waste incinerators', all
study areas were contiguous geographical entities.

Selection and recruitment of participants
A Stratified Clustered Multi-Stage Design was used to
select 775 men and 808 women (n = 1583) aged 50 to 65
as a random sample of the population of the areas under
study. In the selected areas approximately 1.2 million
inhabitants are living which is 20% of the Flemish popu-
lation. A sample size of 200 participants per study area
was aimed at because a power calculation demonstrated
that this appears to be statistically sufficient to detect dif-
ferences of 20% in internal pollutant concentrations
between study areas. As the port area was further split in
two different study areas, the sample size was lower in the
individual port areas of Antwerp (n = 163) and Ghent (n
= 36). Sampling took place in three steps: first by study
area, secondly by sub-municipality entities for access to
participants, and thirdly by selection of the participants in
accordance with the inclusion criteria.

Personal characteristics and sampling
Height and weight were measured, body mass index
(BMI) was calculated. 200 mL of urine and 40 mL of
blood were collected from each participant. Immediately
after sampling, serum was separated. Samples of serum,
whole blood, and urine were stored at 4°C for maximum
one week, or immediately deep frozen. All laboratory
analyses were performed, using blinded methods, in spe-
cialized laboratories that met national and international
quality-control standards.

Information from questionnaires
A self administered questionnaire was used to collect
information on physical condition, use of medication,
education, professional exposure to various pollutants
(solvents, metals, polycyclic aromatic hydrocarbons
[PAHs], asbestos, radioactive and non-ionizing electro-
magnetic radiation, halogenated hydrocarbons and reac-
tive substances), housing conditions, pesticide use,
exposure to noise and traffic, quality and quantity of
homegrown, local and other food consumption, alcohol
consumption and smoking. On the basis of these ques-
tionnaires a number of parameters were calculated,
including average amount consumed per day of fruit, veg-
etables, meat fat, fish fat and dairy fat. Other parameters
concerned self-caught freshwater fish, recent and lifetime
tobacco consumption, recent and average alcohol con-
sumption, and indices for general indoor housing quality,
exposure to traffic, to indoor and outdoor stoking of
diverse organic materials and for experiencing nuisance
from noise during the day and during the night. Smoking
was quantified in terms of units (cigarettes, cigars, pipes)
smoked during the entire lifetime. For people 50–65 years
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Table 1: Characteristics and emission data for the 9 study areas

Area of 
interest

Surface (km2) Number of 
inhabitants*

Characteristics and sources of 
pollution

Pesticide 
use (kg/
km2)**

Industrial 
Emission to 
air (per 
year)***

Industrial 
Emission to 
surface water 
(per year)***

Antwerp 81 404,241 Metallurgic industry, large non-
ferrous smelter, important 
highways, huge traffic

13.3 80 kg PAH

Antwerp Port 179 64,510 Huge petrochemical industries, 
chemical and plastic industry, 
production of pesticides

117 15 kg Cd 15 kg Pb

837.5 kg PAH 4.03 kg Cd
93,729 kg 
benzene

4.1 kg 
pesticides
3.2 kg PAH
640.9 kg 
benzene

Fruit area 362 95,829 Apple and pear orchards: more than 
10 hectares per km2

617

Olen 183 68,068 Large non-ferrous smelter, 
delineated in function of modelled, 
calculated immission of at least 0.9 
ng lead per m3 from the non-ferrous 
smelter. Chemical, plastic and 
automobile industry. Rural areas

34.6 810 kg Pb 88 kg Pb

87 kg Cd 39.71 kg Cd
4,050 kg 
benzene

Ghent 100 213,025 Metallurgic and automobile industry, 
intensive traffic

27.7 150 kg Pb 24.7 kg Pb

Waste 
incinerators

37 56,405 Waste water and waste treatment. 
Delineated in function of modelled, 
calculated immission of at least 1.2 
mg smoke per m3 from the waste 
incinerator

80.1 14 kg Cd 48.7 kg Pb

1.89 kg PAH
Rural area 1181 153,770 Less than 250 inhabitants per km2. 

No highways crossing the 
municipalities. No industries 
reported in the emission inventory 
of the Flemish Environmental 
protection agency.

233

Albert canal 711 64,763 Chemical and plastic industries, rural 
areas, production of electricity

20.8 430 kg benzene 59.5 kg Pb

67.36 kg Cd
Ghent Port 202 65,554 Mainly metallurgic industries 99.2 34,500 kg Pb 1,690 kg Pb

542.1 kg Cd
1,823 kg PAH
225 kg benzene

Total 3036 1,186,165 35,460 kg Pb 1,925.9 kg Pb
658,1 kg Cd 111.1 kg Cd
2,740.5 kg 
PAH

4.1 kg 
pesticides

98,434 kg 
benzene

5.09 kg PAH

640.9 kg 
benzene

* Based on the number of inhabitants of 1998; ** Belgian ministry of Economic affairs and Institute for Social and Economic Geography, Catholic 
University of Leuven; *** Emissions of pollutants reported by the emitting companies themselves to the Flemish Environmental Protection Agency 
http://www.vmm.be.

http://www.vmm.be
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of age, 15 cigarettes a day corresponds roughly to 200.000
units over a lifetime.

Measured internal exposure
Measured exposures included blood cadmium (μg Cd/l),
urinary cadmium (μg Cd/g creatinin), blood lead (μg/l),
serum hexachlorobenzene (ng HCB/g lipid), serum p,p'-
DDE (ng/g lipid); serum polychlorinated biphenyls
(PCBs): PCB 99, PCB 118, PCB 170, PCB 138, PCB 153,
PCB 180 (ng/g lipid); serum Calux TEQ (toxic equiva-
lents, pg PCDD/F Calux TEQ/g lipid); a biomarker for
PAH exposure, 1-hydroxypyrene in urine (1-OHP, μg/g
creatinine); and a biomarker for benzene, t,t'-muconic
acid in urine (ttMA, mg/g creatinine).

Lead and cadmium concentrations in whole blood were
determined after an acid digestion pre-treatment destroy-
ing the organic matrix and a ten times dilution, followed
by High Resolution – Inductively Coupled Plasma – Mass
Spectrometry detection (ICP-MS) as described by Schroi-
jen et al. [5]. Detection limits for cadmium and lead in
whole blood were 0.09 and 2.0 μg/L respectively for
digested blood samples diluted 10 times. Isotope Cd114
was used to quantify the amount of cadmium in urine
using ICP-MS. Urine samples were diluted in nitric acid
(0.7%). Rhodium was used as an internal standard. The
detection limit for urinary cadmium was 0.002 ppb.

PCBs, HCB and p,p'-DDE were analyzed using gas-chro-
matography/electron capture detection (GC-ECD) [25]. 2
mL of blood serum was mixed with 2.85 mL formic acid
and 150 μL acetonitrile. Internal standards (1 ng each of
PCB 143 and PCB 207) were added and the mixture was
equilibrated in an ultrasonic bath for 20 min. The sample
was eluted through an Oasis cartridge at atmospheric
pressure. Subsequently the cartridge was washed with 5
mL methanol/water (1:19) and dried. Elution of the ana-
lytes was performed with 3 mL toluene. The toluene
extract was purified using a multilayer column containing
(top to bottom) 200 mg anhydrous sodium sulphate, 400
mg silica modified with sulphuric acid (44% w/w) and
400 mg silica. The final extract was concentrated under a
stream of nitrogen to a volume of 100 μL and 0.6 ng of
1,2,3,4-tetrachloronaphthalene was added to quantify the
recovery of the internal standards. The extracts were ana-
lyzed with GC-ECD. The detection limit of all chlorinated
compounds in serum was 0.02 μg/L.

1-Hydroxypyrene (a metabolite of pyrene, 1-OHP), and
t,t'-muconic acid (a metabolite of benzene, ttMA) were
detected in urine based on methods used by Angerer &
Schaller [26]. The determination of 1-OHP was per-
formed with High Performance Liquid Chromatography
(HPLC). To release 1-OHP from proteins, urine was
hydrolysed by the enzymes β-Glucuronidase and Arylsul-

fatase (Roche, Belgium) during the night. Then 1-OHP
was on-line extracted from the urine matrix and enriched
and separated on an apolar C-18 reversed phase column
with a gradient solvent mixture of methanol and water.
The detection limit and quantification limit were 0.030
μg/L and 0.092 μg/L, respectively. t,t'-Muconic acid was
determined in urine by means of ion chromatography
using SPE-SAX columns. HPLC, with a solvent gradient of
methanol and acetic acid (1% v/v), was used to separate
the extract from other compounds. The detection limit
and quantification limit were 0.0086 mg/L and 0.0213
mg/L, respectively.

CALUX analyses of dioxin-like activity in blood plasma
was performed as described by Van Wouwe et al. [27] and
Schroijen et al. [28]. Briefly, 5 mL of blood plasma was
extracted with acetone and n-hexane and dried on a
Celite/Na2SO4column. The extract was then transferred
on an Acid Silica column in series with an activated Car-
bon column (XCARB column). After elution of the sample
with n-hexane, the acid silica column was discarded and
the XCARB column was then differentially eluted to yield
3 fractions:

1. a mixture of n-hexane/acetone allows the elution of
some toxic or interfering compounds

2. the PCB fraction is eluted with a mixture of n-hexane/
toluene/ethyl acetate

3. the PCDD/F fraction is collected with 20 mL of toluene.

After this clean-up, fractions 1 and 2 were discarded and
only the dioxin fraction was used for the bio-analysis. The
solution containing the dioxins was then evaporated and
exposed to the mouse hepatoma H1L6.1 cell line devel-
oped by Xenobiotic Detection System, Inc. After an expo-
sure time of 20 h, cells were lysed and measurements were
made with a luminometer. TEQ-values were calculated
after comparison of the obtained signals to a 2,3,7,8-
TCDD calibration curve.

Selection of biomarkers of effects
The following is a summary of the data on which our
selection of biomarkers of effect was based.

Increased serum levels of Prostate Specific Antigen (PSA)
are found in the vast majority of men with prostate cancer.
A Finnish study found, for men under 65 years of age, a
sensitivity of 93% and a specificity of 96% for PSA as a
diagnostic test for prostate cancer using a limit value of 4
ng/mL [29]. Serum PSA level also allows to assess risk of
prostate cancer. Of men with a normal PSA level of 2.1 to
4.0 ng/mL, 1.6% to 5.5% were diagnosed with prostate
cancer within one year, whereas only 0.06% to 1.02% of
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men with a PSA level of 1.1–2.0 ng/mL did so and only
0.01% of men with a PSA level lower than 1 ng/mL was
diagnosed with prostate cancer in a period of three years
[30]. Increased serum PSA levels were found in men
exposed to various pollutants or toxic substances (see dis-
cussion).

Serum levels of Carcinoembryonic Antigen (CEA) are
increased in many types of cancer, in smokers and in per-
sons exposed occupationally or environmentally to pol-
lutants [31-33]. Serum CEA levels measured years before
clinical diagnosis showed a positive correlation with risk
of cancer [34,35]. In our pilot biomonitoring study [4] we
found a positive correlation between CEA serum levels on
the one hand and blood lead levels, an index reflecting
internal exposure to several pollutants, and HPRT mutant
frequency in peripheral blood cells on the other.

Increased serum levels of mutated p53, or of anti-p53
antibody, have been found in cancer patients [36] and in
workers exposed to carcinogenic substances
[10,13,14,37,38]. Anti-p53 antibodies or increased levels
of mutant p53 protein can predate the diagnosis of cancer
[39-41]. In our pilot biomonitoring study we found a pos-
itive correlation between anti-p53 antibody levels on the
one hand and blood lead levels and an index reflecting
internal exposure to several pollutants on the other. At the
start of the project we gave preference to p53 serum level

above anti-p53 antibody serum level, because it was
reported that increased levels of p53 would occur in more
persons than increased levels of anti-p53 antibodies [10].

Measurement of the number of micronuclei per 1000
binucleated peripheral blood cells (micronuclei) is one of
the best established biomarkers of chromosome damage
[42]. An increased frequency of micronucleated cells is a
biomarker of genotoxic effects that can reflect exposure to
agents with clastogenic (chromosome breaking; DNA as
target) or aneugenic (aneuploidogenic; effect on chromo-
some number; mostly non-DNA target) modes of action
[43]. An increased micronucleus frequency in peripheral
blood lymphocytes predicts the risk of cancer in humans
[44]. This test reflects genetic damage that occurred over a
longer period of time and is relatively stable over a 12
month period [45]. Sensitivity is rather low. We estimated
that a difference of the order of 30% is needed in order for
the test to reach a power of the order of 0.9 in discriminat-
ing between two groups of 100 persons [45]. The micro-
nucleus test is simpler, cheaper and is less time consuming
than the chromosome aberration assay that was too
expensive in the context of our project.

Measurement of DNA-strand breaks in peripheral blood
cells in terms of the median value of the percentage of
DNA in the tail using the comet assay was selected to
reflect recent damage to DNA. The alkaline single-cell gel

Map of the 9 areas in which participants for the biomonitoring program were recruitedFigure 1
Map of the 9 areas in which participants for the biomonitoring program were recruited.
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electrophoresis (SCGE) or Comet assay is an easy, reliable
and rapid method to detect DNA single strand breaks,
alkaline labile sites and delayed repair sites of DNA. It is
able to detect low levels of DNA damage, requires small
sample sizes and has a rather low cost [46]. The inter and
intra-assay coefficients of variation are of the order of 20%
[47]. We estimated that the assay has a power of the order
of 0.90 to discriminate between two groups of about 30
persons showing a mean difference of 10% [46].

The measurement of 8-hydroxy-deoxy-guanosine (HDG)
in urine per gram creatinine was selected to assess recent
oxidative stress. HDG is excreted in the urine after excision
of this mutagenic oxidative adduct from DNA and reflects
the amount of oxidative damage to DNA and its repair. Its
measurement is affordable and has inter- and intra-assay
coefficients of variation of 8 to 24% [48]. We estimated
that the test has a power of the order of 0.9 to discriminate
between two groups of about 100 persons showing a
mean difference of 12% [46].

Biomarkers of effects: methods of measurement
Tumor associated protein levels in serum were measured
by Interlab, (Evergem, Belgium) a laboratory recognized
by the Belgian Ministry of Health as a reference laboratory
for tumor markers. CEA and PSA serum concentrations
were both measured with an immunometric assay. The
Immulite® 2000 (DPC, Los Angeles, CA, USA) technology
was applied on 15 and 10 μl serum samples respectively,
that were assessed within 24 h after venipuncture. The
within-run precisions of the methods applied on samples
in the normal, non-pathological range were 3.0 and 3.3%
(coefficients of variation) respectively. p53 levels were
analysed in 100 μL serum samples with the TiterZyme EIA
p53 Kit (Assay Designs, Inc., Ann Arbor, MI, USA) in
accordance with the manufacturer's instructions. The
lower limit of detection (analytical sensitivity) was deter-
mined on the basis of the mean of the zero standard (pro-
cedural blank) plus two standard deviations, and
calculated to be 9 pg/mL. The monoclonal capture anti-
body recognizes both wild-type and mutant human p53.
p53 results below the detection limit were given the value
of 4.5 pg/ml.

The amount of DNA-strand breaks was evaluated by the
alkaline comet assay as described in Verschaeve et al. [49].
The whole blood cells were kept at room temperature dur-
ing maximum 2 days after the blood was taken. The comet
assay methodology consisted of embedding the whole
blood cells in agarose and layering on microscope slides.
After lysis of the nuclei, the slides were put for 40 min in
a horizontal electrophoresis chamber filled with alkaline
buffer to allow unwinding of the DNA. Electrophoresis in
this buffer (20 min, at 1 V/cm) was followed by washing
and staining with ethidium bromide. The slides were

viewed using the image analysis system Methasystems
Finder, version 2.8.0®, Methasystems inc. For each person
30% of the slide was viewed. Around 200 cells were proc-
essed and the median percent of DNA migration in the tail
area was determined and used as a measure of DNA dam-
age. As positive control one slide with nuclei from deep
frozen whole blood cells was added to each electrophore-
sis chamber. In those positive controls at least 30% of
DNA had to migrate into the tail area to control the func-
tioning of the electrophoresis.

The cytokinesis-block micronucleus assay was performed
on whole blood cultures from 100 individuals using
standard procedures [50]. For each individual, 1000 binu-
cleated cells were evaluated for the presence of micronu-
clei on a Zeiss Axioplan microscope with a 100× objective.

Urinary HDG, a measure for oxidative DNA-damage, was
measured via ELISA using the competitive inmunosorbent
assay-kit (Gentaur, Belgium).

Statistical analyses
Statistical analyses were performed with the Statistica 7.1
program (Statsoft, Tulsa, OK, USA). The effect parameters
did not show a Gaussian distribution, so the natural loga-
rithm of these parameters was used in statistical analysis.
Crude data (median and p10 and p90) as well as adjusted
data are shown. As we did in our previous studies [5,23],
we used the parameter 'marker PCBs' (the sum of serum
concentrations of PCBs occurring in the highest concen-
trations: PCB 138 + PCB 153 + PCB 180) in our analysis
to reflect exposure to PCBs in general whereas the other
PCBs were considered individually. Confounding factors
were taken into account. A confounding factor is a varia-
ble that correlates with both the dependent and the inde-
pendent variable and controlling for confounding is
necessary to avoid false positive conclusions that the
dependent variable is correlated with the independent
variable. Differences between areas after correction for
confounding factors were evaluated by means of Analysis
of Covariance (ANCOVA). Confounding factors for anal-
yses were defined as age, sex, body mass index (BMI, for
analysis including PSA, PCBs, HCB and p,p'-DDE) and
lifetime smoking (PSA, CEA, p53, micronuclei) or recent
smoking (DNA-strand breaks, oxidative DNA damage).
When the 9 areas showed an overall significant difference
in ANOVA, then the mean value of each study area was
compared with the area showing the lowest mean value
using the post hoc Fisher protected least significant differ-
ence (PLSD) test.

Also, effect biomarker levels of each area were compared
to the rest of the dataset. The correlation of biomarkers of
effect (as dependent variables) with the measured param-
eters of internal exposure and with some exposure varia-
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bles derived from questionnaires was studied in simple
linear regression. When this analysis resulted in a p-value
below 0.05, a multiple regression was performed with the
biomarker of effect as dependent variable and, as inde-
pendent variables, in addition to the parameter of expo-
sure in question, also the relevant confounding factors.

Some sets of effect and exposure biomarkers showed, in a
bivariate regression plot, contrasting correlations for dif-
ferent ranges of exposure or effect. In those cases we used
p10, p25–p75 and p90 levels to discriminate classes of
exposure or effect in order to study correlations in the dif-
ferent ranges using AN(C)OVA.

We calculated for each biomarker of exposure a standard
or z score for each individual by dividing the difference
between the value for that individual and the mean value
for the entire subject population by the standard devia-
tion for the entire subject population. We calculated for
each subject an index of internal exposure Iex defined as
the arithmetic mean of the z scores for blood lead concen-
tration, sum of serum concentrations of marker PCBs
(138, 153 and 180), serum concentration of PCB 118
(considered to reflect exposure to dioxin-like PCBs [51]),
HCB and p,p'-DDE, dioxin-like activity in serum meas-
ured through the calux bioassay, urinary excretion of cad-
mium, 1-hydroxypyrene and of t-t'-muconic acid per g
creatinin (Iex = (zblood lead + zsum of serum marker PCbs + zPCB118+
zHCB + zDDE + zdioxin-like activity + zurinary Cd + z1-OHP + zttMA)/9).

Results
Range of internal exposure
Table 2 shows crude data concerning measured internal
exposure in the whole study population. A detailed report
on the impact of area of residence and of other factors on
the internal exposure will be published elsewhere.

Differences in biomarkers of effect between main areas
Table 3 shows crude data, number of cases (n) and p-val-
ues in ANCOVA (without correction for confounding)
and table 4 shows adjusted data and p-values in ANCOVA
after correction for confounding factors, for seven biomar-
kers that were measured in the study population in the
nine different areas considered in Flanders.

After correction for confounding factors, overall differ-
ences for effect biomarker levels between areas were
observed for CEA, micronuclei, DNA-strand breaks and
oxidative DNA damage (p = 0.034, 0.045, 0.00017 and
0.037 respectively). Compared to the rest of the dataset,
significantly higher values of biomarkers of effect were
observed for residents of 'waste incinerators' (micronu-
clei, DNA-strand breaks, oxidative DNA damage) and
Ghent (DNA-strand breaks). Compared to the area with
the lowest observed value, significantly higher values were

observed for persons residing near waste incinerators
(CEA, micronuclei, DNA-strand breaks, oxidative DNA
damage), in Antwerp (CEA, micronuclei), in Ghent (CEA,
micronuclei, DNA-strand breaks), in the 'rural area'
(micronuclei, DNA-strand breaks), in the 'Albert canal'
area (micronuclei), in the 'Olen' area (micronuclei) and
in the 'fruit area' (oxidative DNA damage).

After additional correction for nutrition, alcohol con-
sumption and education, overall significant differences
between areas were still observed for oxidative DNA dam-
age (p = 0.040) and for DNA-strand breaks (p < 0.001),
but p-values increased for CEA (p = 0.16) and for micro-
nuclei (p = 0.11).

Differences between local districts within main areas
Within the main areas differences were observed (after
correction for confounding) between small local districts.
Between the areas around the different waste incinerators
significant differences were observed for DNA-strand
breaks (p < 0.0001) with values (adjusted geometric
mean; 95% confidence interval; number of cases) of resi-
dents around the incinerators of Menen (2.19% DNA;
95% CI: 1.93, 2.50; n = 34), Roeselare (2.46% DNA; 95%
CI: 2.15, 2.82; n = 31) and Wilrijk (1.89% DNA; 95% CI:
1.52, 2.36; n = 12) significantly higher than those of
Harelbeke (1.34% DNA; 95% CI: 1.13, 1.59; n = 23).
Within 'Antwerp port' a significant overall difference for
DNA-strand breaks (p < 0.0001) was found, with values in
Burcht, close to a large non-ferro industry (2.97% DNA;
95% CI: 2.23, 3.95; n = 14) significantly higher than Bev-
eren situated about 6 kilometres upwind of the mean
industrial installations (1.00% DNA; 95% CI: 0.83, 1.20;
n = 34). For 'rural area' significant overall differences were
found for CEA (p = 0.03) with significantly higher values
(adjusted geometric mean; 95% confidence intervals;
number of cases) in the rural areas around Brakel (2.03
ng/ml; 95% CI: 1.72, 2.40; n = 37) as opposed to those
around Eeklo (1.63 ng/ml; 95%CI: 1.46, 1.83; n = 77).

Associations of biomarkers of effect with levels of internal 
exposure: parameters showing an association over the 
whole range of measured values
Table 5 presents significant (p < 0.05) relationships, after
correction for confounding factors, between measured
exposure and effect biomarkers. Significant positive corre-
lations have been found for CEA (urinary cadmium, lead,
ttMA, 1-OHP, index of internal exposure Iex), Micronuclei
(PCB118), DNA-strand breaks measured through the
comet assay (PCB118) and oxidative DNA-damage
assessed through measurement of HDG in urine (ttMA, 1-
OHP).
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Associations of biomarkers of effect with levels of internal 
exposure: parameters showing an association at higher 
values
Some sets of effect and exposure biomarkers showed, in a
bivariate regression plot, a correlation that was dependent
on the range of exposure or effect and was significant after
correction for confounding factors.

- Higher PSA levels (above p90) were associated with
higher values of urinary cadmium (p = 0.029), as is shown
in figure 2.

- Higher p53 levels (above p90) were associated with
higher values of marker PCBs, DDE, HCB and the index of
internal exposure Iex (p = 0.049, 0.035, 0.024, 0.00083),
as is shown in figures 3, 4, 5, 6.

- Higher DDE levels (above p90) were associated with
higher CEA levels (p = 0.018), as shown in figure 7.

- Higher levels of blood and urinary cadmium (above
p90) were associated with lower micronuclei counts com-
pared to the group between p25 and p75 of cadmium
concentrations (p = 0.037 and 0.033 respectively). Lower
levels of blood and urine cadmium (below p10) were
associated with lower counts of micronuclei compared to
the group with cadmium concentrations between p25 and
p75, although this was not statistically significant. See fig-
ures 8, 9.

Associations of biomarkers of effect with exposure 
variables derived from questionnaires
Table 6 presents relationships between exposures assessed
from questionnaires and effect biomarkers. Significant
positive associations were found for PSA (daily consump-
tion of dairy fat), CEA (daily consumption of fish fat;
recent alcohol consumption; average alcohol consump-
tion, lifetime smoking, professional exposure to halogen-

ated hydrocarbons, professional exposure to solvents),
p53 level in serum (daily consumption of fruit, daily con-
sumption of fish fat), micronuclei (daily consumption of
vegetables, daily consumption of fish fat), DNA-strand
breaks as measured with the comet assay (professional
exposure to halogenated hydrocarbons, professional
exposure to solvents, nuisance from noise during the day
and from noise during the night, indoor stoking of diverse
organic materials).

Significant negative associations were found for DNA-
strand breaks as measured with the comet assay with daily
consumption of meat fat and occasional consumption of
self-caught freshwater fish.

Between smoking and number of micronuclei a complex
relationship was observed (figure 10). Overall differences
between crude values for different smoking categories
were significant (p = 0.005). After correction for age and
sex the overall difference is no longer significant (p =
0.09), but heavy smokers (more than 200,000 cigarettes)
show significantly less micronuclei than non-smokers or
light smokers (p = 0.00030 and 0.023).

Level of education was not significantly associated with
effect biomarkers.

Discussion
Differences in association with area of residence
As in the pilot campaign of the Flemish human biomoni-
toring program [2,4,23] we found significant differences
in effect-biomarkers in association with area of residence.
Such differences were found for CEA, micronuclei, DNA-
strand breaks and oxidative DNA damage.

In the 'Olen' and 'Albert Canal' industrial areas micronu-
clei values were significantly higher than in the area with
the lowest value, suggesting that both petrochemical and

Table 2: Crude biomarkers of exposure for the whole study area

Biomarker of exposure n median p10 p90

Cadmium blood (μg/L) 1,579 0.48 0.16 1.24
Cadmium urine (mg/g crt) 1,581 0.62 0.32 1.30
Lead (μg/L) 1,579 39.18 20.18 76.35
HCB (ng/g fat) 1,577 55.92 28.17 121.36
PCB99 (ng/g fat) 1,577 10.81 1.66 24.35
PCB118 (ng/g fat) 1,577 25.85 11.71 50.68
PCB156 (ng/g fat) 1,577 18.90 11.01 31.89
PCB170 (ng/g fat) 1,577 40.28 24.91 64.41
Sum marker PCBs (138+153+180) (ng/g fat) 1,577 345.48 213.23 532.15
Calux assay (pg TEQ/g fat) 1,437 22.90 5.43 45.71
p,p'-DDE (ng/g lipid) 1,577 487.33 141.60 1,587.30
1-OHP (μg/g crt) 1,575 0.143 0.032 0.684
ttMA (mg/g crt) 1,391 0.082 0.017 0.334

Median (p10–p90) crude values and number of cases.
Page 9 of 19
(page number not for citation purposes)



Environmental Health 2008, 7:26 http://www.ehjournal.net/content/7/1/26
non-ferro industries might contribute to the risk of cancer
of people residing in their vicinity. However we found no
evidence indicating that the risk of cancer of the whole
population of large areas of the order of 200 km2 is
increased above the risk of the rest of the Flemish popula-
tion by the heavy industry situated in those areas. This
may in part be explained by the fact that many partici-
pants resided in zones located to the west of the industrial
sites in both port areas. The dominant wind pattern in Bel-
gium is from west to east, which means that residents liv-
ing west of the point sources are less exposed. Within
'Antwerp port', the district of Burcht situated close to a
large non-ferro industry showed much more DNA-strand
breaks than the district of Beveren situated about 6 kilom-
eters further to the west of the industrial sites. Our find-
ings suggest that a detectable increase in risk might be

restricted to those groups, such as the inhabitants of
Burcht, residing within a few kilometers of important
point sources.

Our observations indicate that residence near waste incin-
erators might be associated with an increase in the risk of
cancer. Indeed, all three biomarkers of genotoxic effects
were significantly increased, not only above the level
observed in the area with the lowest value, but also above
the level observed for the rest of Flanders. For each of
these biomarkers the highest level was observed in resi-
dents of 'waste incinerators'. In addition, the level of CEA
was above the level observed in the area with the lowest
value.

Table 3: Effect-biomarkers for different main study areas: crude values. 

Main area PSA (ng/
mL) p = 
0.23

CEA (ng/
mL) p = 
0.014

p53 (pg/mL) 
p = 0.33

Micronuclei 
(number per 1000 
binucleated cells) p 
= 0.15

DNA-strand 
breaks (comet 
assay, %DNA) p = 
0.00015

Oxidative DNA 
damage (HDG 
μg/g crt) p = 0.05

Antwerp median 1.17 1.91***(H) 4.5 7.30 1.69 14.5
p10, p90 0.39, 3.31 0.88, 4.70 4.5, 109.0 2.70, 14.90 0.55, 3.39 9.2, 22.3
n 97 125 117 109 68 50

Antwerp 
Port

median 0.95 1.55 4.5 6.65 1.23#a(L) 15.9

p10, p90 0.40, 3.53) 0.80, 3.94 4.5, 84.0 2.90, 13.30 0.56, 4.67 8.0, 21.8
n 75 64 64 62 49 39

Fruit Area median 0.88# 1.57# (L) 4.5 6.00# (L) 1.35 (L) 15.5*
p10, p90 0.33, 2.17 0.59, 3.60 4.5, 161.0 2.30, 14.10 0.85, 3.19 11.4, 26.1
n 100 88 111 75 44 35

Olen median 0.97 1.57 4.5 7.00 1.60 14.3
p10, p90 0.35, 3.42 0.72, 5.41 4.5, 121.0 3.00, 12.50 0.61, 2.60 8.2, 23.4
n 95 79 79 79 74 40

Ghent median 0.96 1.88* 4.5 7.25 2.03*** (H) 15.3
p10, p90 0.45, 2.96 0.81, 4.30 4.5, 111.0 3.20, 14.30 0.97, 3.65 9.7, 22.9
n 93 99 99 98 85 72

Waste 
Incinerators

median 0.86 1.89* 4.5# 8.60 (H) 2.24*** (H) 17.9** (H)

p10, p90 0.30, 2.49 0.82, 4.33 4.5, 59.0 2.90, 17.40 0.95, 3.13 9.4, 28.4
n 94 121 102 101 100 51

Rural area median 1.06 1.79 4.5 7.00 1.97** 14.7# (L)
p10, p90 0.34, 2.87 0.80, 3.31 4.5, 159.0 2.50, 16.10 1.03, 2.95 8.0, 20.8
n 100 114 114 110 101 76

Albert Canal median 1.08 1.49 (L) 4.5 7.10 1.97 15.5
p10, p90 0.47, 3.17 0.80, 3.30 4.5, 139.0 3.00, 15.60 0.95, 2.67 10.0, 21.9
n 97 103 103 103 37 35

Ghent Port median 0.81 1.84 4.5 6.60 1.73 9.3
p10, p90 0.43, 2.76 0.78, 4.08 4.5, 512.0 3.20, 14.20 1.00, 2.57 -
n 19 36 36 36 35 1

H indicates significantly higher values for the area compared to the rest of Flanders.
L indicates significantly lower values for the area compared to the rest of Flanders.
# area with lowest crude geometric mean. Significant differences with the area with the lowest geometric mean in an LSD post hoc test are 
indicated by *p < 0.05, **p < 0.01, ***p < 0.001.
a This low value is due to the residents of Beveren situated about 6 kilometres upwind of the industrial installations, who had a mean value of 1.10% 
(see text).
Median and p10–p90 crude values and number of cases. Statistical significance is assessed in ANOVA.
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Our observations also suggest that residence in cities
might be associated with some increase in the risk of can-
cer. Both in Antwerp and in Ghent levels of CEA and of
micronuclei were significantly elevated above the level
observed in the area with the lowest value. In Ghent DNA
strand breaks were increased compared to the level

observed in the area with the lowest value, as well as
above the level observed in the rest of Flanders.

Interestingly, we found no evidence that residence in an
area where intensive use of pesticides occurred, increased
risk of cancer. On the contrary, although the level of oxi-

Table 4: Effect-biomarkers for different main study areas: adjusted values.

Main area PSA (ng/mL) 
p = 0.30

CEA (ng/mL) 
P = 0.034

p53 (pg/mL) 
p = 0.40

Micronuclei 
(number per 
1000 
binucleated 
cells) p = 0.045

DNA-strand 
breaks (comet 
assay, %DNA) 
p = 0.00017

Oxidative 
DNA damage 
(HDG μg/g crt) 
p = 0.037

Confounding
variables

A/LS/BMI A/S/LS A/S/LS A/S/LS A/S/RS A/S/RS

Antwerp geometric 
mean

1.13 1.94*** 9.3 6.64* 1.54 14.4

95% CI 0.95, 1.34 1.75, 2.16 7.1, 12.2 5.86, 7.53 1.35, 1.75 13.0, 16.0
n 97 125 117 109 68 50

Antwerp Port geometric 
mean

0.92 1.63 10.4 5.95 1.42# a (L) 14.7

95% CI 0.76, 1.11 1.41, 1.88 7.3, 15.0 5.05, 7.02 1.21, 1.66 13.0, 16.5
n 75 64 64 62 49 39

Fruit Area geometric 
mean

0.82# (L) 1.59 (L) 11.7 5.16# (L) 1.44 (L) 16.6*

95% CI 0.70, 0.98 1.40, 1.80 8.9, 15.4 4.44, 6.00 1.22, 1.69 14.7, 18.8
n 100 88 111 75 44 35

Olen geometric 
mean

1.02 1.77 10.8 6.57* 1.57 14.0

95% CI 0.86, 1.21 1.55, 2.02 7.8, 14.9 5.67, 7.60 1.38, 1.79 12.5, 15.8
n 95 79 79 79 74 40

Ghent geometric 
mean

1.02 1.89* 11.3 6.77* 1.97*** (H) 15.1

95% CI 0.86, 1.21 1.68, 2.12 8.5, 15.2 5.94, 7.72 1.75, 2.22 13.8, 16.4
n 93 99 99 98 85 72

Waste geometric 
mean

0.91 1.89** 9.2# 7.51*** (H) 2.03*** (H) 17.3** (H)

Incinerators 95% CI 0.77, 1.08 1.70, 2.10 6.9, 12.2 6.60, 8.55 1.82, 2.26 15.6, 19.1
n 94 121 102 101 100 51

Rural area geometric 
mean

0.94 1.85 13.3 6.75* 1.86** 14.0#

95% CI 0.80, 1.11 1.65, 2.06 10.1, 17.4 5.97, 7.65 1.67, 2.07 12.8, 15.2
n 100 114 114 110 101 76

Albert Canal geometric 
mean

1.09 1.54# (L) 13.9 6.57* 1.66 15.0

95% CI 0.92, 1.29 1.37, 1.73 10.5, 18.5 5.78, 7.46 1.39, 1.99 13.2, 16.9
n 97 103 103 103 37 35

Ghent Port geometric 
mean

1.00 1.91 13.53 6.44 1.66 8.9

95% CI 0.68, 1.47 1.58, 2.32 8.4, 21.9 5.18, 8.00 1.38, 1.99 -
n 19 36 36 36 35 1

H indicates significantly higher values for the area compared to the rest of Flanders.
L indicates significantly lower values for the area compared to the rest of Flanders.
# area with lowest adjusted geometric mean.
Significant differences with the area with the lowest geometric me an in an LSD post hoc test are indicated by *p < 0.05, **p < 0.01, ***p < 0.001.
a This low value is due to the residents of Beveren situated about 6 kilometres upwind of the main industrial installations, who had a geometric 
mean value of 1.00% (see text below). A = age, S = sex, LS = lifetime smoking, RS = recent smoking, BMI = body mass index.
Adjusted geometric means, 95% confidence intervals and number of cases. Statistical significance is assessed in ANCOVA after adjustment for 
confounding factors as described in the text.
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dative DNA damage observed for these residents was sig-
nificantly increased compared to the level observed in the
area with the lowest value, the levels of micronuclei, of
DNA strand breaks, of CEA and of PSA were significantly
lower than those observed for the rest of Flanders. In
terms of our observations, the 'fruit area' appeared to be
the area with the most favorable results.

Remarkably, results for rural Flanders were not signifi-
cantly better for any of the biomarkers of effect than for
the rest of Flanders. For micronuclei and DNA-strand
breaks, relatively high values were observed, significantly
elevated above those observed in the area with the lowest
value. Correspondingly, relatively high levels of internal
exposure to some pollutants were observed in residents of
rural areas in Flanders in both the pilot and the subse-
quent biomonitoring studies in Flanders. Indeed, in the
Flemish pilot biomonitoring study, women aged 50–65
residing in the rural area of Peer had higher levels of cad-
mium and dioxin-like activity in their blood or serum,
and higher levels of cadmium and 1-hydroxypyrene in
their urine than women residing in the city of Antwerp
[23]. Also, adolescents residing in rural areas had blood
levels of cadmium and organochlorine pollutants above
Flemish reference values [5]. Concerning effect biomark-
ers, in the rural area of Peer men were found to have a
lower sperm quality and lower testosterone levels [52],
and women aged 50–65 showed higher HPRT mutant fre-
quencies than residents of the industrial city of Antwerp.
Taken together, these results indicate that, at least in some
respects, internal exposure and biological effects related to
environmental pollution are no less in rural areas than in

other Flemish areas. We do not know how this comes
about, except for the fact that certain local habits such as
burning waste, inappropriate use of pesticides and con-
sumption of self-grown food [24] could be involved.
Indeed, consumption of self-grown vegetables, which is
more frequent in rural areas, has been associated with a
higher exposure to pesticides and cadmium and also with
lower sex hormone levels and with lower sperm quality
(discussed by Dhooge et al. [24]).

Our study was not designed to detect differences in inter-
nal exposure or in biological effects in the immediate sur-
roundings of sources of pollution, and was only meant to
observe differences between large areas with different
types and levels of pollution. However, we did observe
higher internal exposure (Schroijen et al. 2007; unpub-
lished results) or more intense biological effects (this
paper and also unpublished results on gene expression)
near point sources of pollution reaching marginal or even
full statistical significance, although only a low number of
people were studied around these point sources. In terms
of DNA strand breaks, a difference of almost a factor of
three was observed. This suggests that the relatively high
values of internal exposure measured in most people in
Flanders, independent of their area of residence, are in
part due to emissions of point sources. Although they do
not lead to detectable increases in internal exposure nor to
detectable biological effects in the larger area where they
are located, they do lead to significantly higher internal
exposure and associated biological effects in people resid-
ing at short distance. Distance from nuclear power plants

Table 5: Associations between levels of biomarkers of effect and measured internal exposure. 

Effect biomarker n Parameter of 
internal 
exposure

Confounding 
factors

Regression 
coefficient

Standardized 
regression 

coefficient (95% CI)

Squared semi-
partial 

correlation

p-value

CEA (ng/mL) n = 829 829 Lead μg/L A/S/LS 0.0084 0.104 (0.044, 0.165) 0.0136 < 0.001
1-OHP μg/g crt A/S/LS 0.427 0.101 (0.039, 0.164) 0.0120 0.0016
Cadmium urine 
mg/g crt

A/S/LS 0.380 0.099 (0.034, 0.165) 0.0105 0.0032

ttMA mg/g crt A/S/LS 1.111 0.092 (0.030, 0.154) 0.0103 0.0036
Index of internal 
exposure (Iex)

A/S/LS 0.445 0.101 (0.037, 0.166) 0.0090 0.0022

Micronuclei (number 
per 1000 binucleated 
cells)

773 PCB118 ng/g fat A/S/LS/BMI 0.0280 0.092 (-0.095, 0.278) 0.0091 0.0083

DNA-strand breaks 
(%DNA, comet assay)

593 PCB118 ng/g fat A/S/RS/BMI 0.0051 0.093 (0.007, 0.178) 0.0077 0.034

Oxidative DNA-
damage (μg HDG/g 
crt)

399 ttMA mg/g crt A/S/RS 4.047 0.096 (-0.003, 0.194) 0.0092 0.057

1-OHP μg/g crt A/S/RS 3.178 0.179 (0.077, 0.282) 0.0289 < 0.001

A multiple regression was performed with each effect biomarker as dependent variable with a measured exposure variable and confounding factors 
as independent variables. CI: confidence interval, n: number of cases, A = age, S = sex, LS = lifetime smoking, RS = recent smoking, BMI = body mass 
index.
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showed a pronounced negative correlation with child-
hood leukaemia in a recent German study [53].

Exposure effect relationships
Our results indicate that levels (see table 2) of internal
exposure to some environmental pollutants as they occur
in the Flemish population show indeed a positive correla-
tion with some biomarkers of genotoxic effects and with
the levels of some tumor-associated proteins. Although
quite low, these levels might contribute to the relatively
high risk of cancer observed in Flanders [54]. As discussed
below for each of the effect biomarkers such positive cor-
relations were observed for blood lead levels with serum
levels of CEA; for urinary cadmium levels with serum lev-
els of CEA and PSA; for urinary 1-OHP levels (a biomarker
for PAH exposure) with oxidative DNA damage and
serum levels of CEA; for urinary ttMA (a biomarker for
benzene exposure) with oxidative DNA damage and
serum levels of CEA; for serum levels of PCB 118 with the
amount of DNA-strand breaks and the number of micro-
nuclei in peripheral blood cells; for serum level of marker
PCBs with p53 serum levels; for serum level of HCB with
p53 serum levels; for serum level of DDE with serum lev-
els of p53 and CEA; for an index of internal exposure with
serum levels of CEA and p53.

Higher prostate specific antigen (PSA) levels (above p90)
were associated with higher cadmium levels in blood. A
positive association between internal exposure to cad-
mium and increased serum PSA values has been found
previously [55-57]. Increased serum PSA levels were also
found in men exposed to phenol, mixed vapours or for-
malin [58] and PCBs [59] and also in men with a higher
intake of 2-amino-1-methyl-6-phenylimidazo [4,5-
b]pyridine (PhIP), a genotoxic carcinogen formed during
cooking of meat [60]. In our study, PSA-levels were also
associated with dairy consumption. In the literature, pos-

itive correlations were reported between PSA and respec-
tively dairy fat intake, total fat intake, and high calcium
intake [61,62]. Higher PSA levels have been linked to an
increased risk of consequently developing prostate cancer
[63-65].

We found positive associations between several parame-
ters of internal exposure and carcinoembryonic antigen
(CEA) levels. This was the case for urinary cadmium,
blood lead, serum DDE, urinary ttMA, urinary 1-OHP lev-
els and for an index for internal exposure. Also smoking,
alcohol consumption and consumption of fish fat, and
occupational exposure to solvents or to halogenated
hydrocarbons showed a positive association with serum
CEA levels. In our pilot study we already found a positive
association between serum CEA and an index of internal
exposure based on blood levels of lead, marker PCBs and
dioxin like activity, and on urinary levels of cadmium and
1-OHP [4]. Positive correlations between serum CEA lev-
els and urinary 1-OH-P [33] and between blood levels of
cadmium and CEA [66] were described previously. A pos-
itive association between CEA and smoking or alcohol
consumption was reported by Verdi et al. [67] and Her-
beth & Bagrel [68]. Also, Herbeth & Bagrel [68] reported
an association between poor working conditions (noise,
dust, vibrations, toxic products) and CEA levels, which is
in accordance with the association we have found
between CEA and occupational exposure to solvents or to
halogenated hydrocarbons. CEA is a tumormarker which
rises in concentration during the development of several
cancers [69]. Also, elevated levels of CEA were associated
with an increased risk of developing lung cancer [34] or
colorectal cancer [35].

In our dataset serum levels of the tumorsuppressor pro-
tein p53 above the p90 were associated with higher levels
of marker PCBs, DDE, HCB and an index of internal expo-

PSA levels above p90: association with higher urinary cad-mium concentrationsFigure 2
PSA levels above p90: association with higher urinary cad-
mium concentrations.

PSA<p90 PSA≥p90
0,0

0,2

0,4

0,6

0,8

1,0

U
rin

ar
y 

C
d 

(µ
g/

g 
cr

t) Mean Mean±0,95 Conf. Interval 

p53 levels above p90: association with higher serum marker PCB concentrationsFigure 3
p53 levels above p90: association with higher serum marker 
PCB concentrations.
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sure. Howsam et al. [70] found a correlation between p53
gene mutations and p,p'-DDE exposure, and between
PCB-exposure and colorectal cancer risk. In the pilot bio-
monitoring campaign in Flanders we found a positive
association between blood lead and the level of anti-p53

antibodies, and also between anti-p53 antibodies and an
index of internal exposure based on blood levels of lead,
marker PCBs and dioxin like activity, and on urinary levels
of cadmium and 1-OHP [4]. Increased p53 levels have
been found in cases of exposure to other pollutants such

Table 6: Associations between effect biomarkers and exposure information derived from questionnaires. 

Effect biomarker n Parameter of exposure Confounding 
factors

Regression 
coefficient

Standerdized 
regression 

coefficient (95% 
CI)

Squared 
semi-partial 
correlation

p-value

PSA ng/mL (n = 770) 770 Consumption of dairy fat A/S/LS/BMI 0.009 0.071 (0.001, 0.142) 0.005 0.047
CEA ng/mL (n = 829) 829 Lifetime smoking A/S 0.064 0.429 (0.313, 0.546) 0.048 < 0.000001

Consumption of Alcohol A/S/LS 0.030 0.174 (0.110, 0.237) 0.027 < 0.000001
Exposure to solvents A/S/LS 0.383 0.100 (0.038, 0.161) 0.010 0.0015
Recent alcohol consumption A/S/LS 0.046 0.096 (0.033, 0.160) 0.008 0.0029
Consumption of fish fat A/S/LS 0.070 0.069 (0.008, 0.131) 0.005 0.027
Exposure to halogenated 
hydrocarbons

A/S/LS 0.266 0.068 (-0.080, 0.216) 0.005 0.030

p53 pg/mL 825 Consumption of fish fat A/S/LS 9.836 0.097 (0.028, 0.166) 0.009 0.0059
Consumption of fruit A/S/LS 0.115 0.098 (0.029, 0.167) 0.009 0.0056

Micronuclei (number 
per 1000 binucleated 
cells)

773 Consumption of fish fat A/S/LS 0.312 0.108 (0.043, 0.173) 0.011 0.0011

Consumption of vegetables A/S/LS 0.003 0.089 (0.024, 0.153) 0.008 0.0072
DNA strand breaks 
(%DNA, comet 
assay)

593 Consumption of meat fat A/S/RS -0.018 -0.125 (-0.208, -
0.042)

0.014 0.0033

Indoor stoking of diverse 
organic materials

A/S/RS 0.228 0.111 (0.030, 0.191) 0.012 0.0072

Exposure to solvents A/S/RS 0.208 0.102 (0.020, 0.184) 0.010 0.015
Consumption of freshwater 
fish

A/S/RS -0.447 -0.098 (-0.178, -
0.018)

0.010 0.017

Nuisance from noise (day) A/S/RS 0.124 0.094 (0.014, 0.175) 0.009 0.022
Nuisance from noise (night) A/S/RS 0.170 0.087 (0.006, 0.167) 0.007 0.036
Exposure to halogenated 
hydrocarbons

A/S/RS 0.179 0.086 (0.005, 0.167) 0.007 0.039

A multiple regression was performed with each effect biomarker as dependent variable with a measured exposure variable and confounding factors 
as independent variables. CI: confidence interval, n: number of cases, A = age, S = sex, LS = lifetime smoking, RS = recent smoking, BMI = body mass 
index.

p53 levels above p90: association with higher serum p,p'-DDE concentrationsFigure 4
p53 levels above p90: association with higher serum p,p'-
DDE concentrations.
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p53 levels above p90: association with higher serum HCB concentrationsFigure 5
p53 levels above p90: association with higher serum HCB 
concentrations.
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as vinylchloride [10,14,71,72], asbestos [13] and PAHs
[13,38]. Anti-p53 antibodies in sera from patients with
chronic obstructive pulmonary disease can predate a diag-
nosis of cancer [39]. Levels of p53 can be increased in
serum collected years before the clinical diagnosis in
patients with asbestos or silica related occupational can-
cers [40,41].

Levels of micronuclei showed a positive association with
higher levels of PCB 118 in serum and with a higher con-
sumption of fish fat and vegetables. According to Park et
al. [51] total dioxin-like PCBs are highly correlated with
PCB 118 (correlation coefficient r = 0.98, p < 0.01) in
human serum. The observed positive association between
PCB 118 level and number of micronuclei might stem
from the fact that a higher PCB 118 level reflects a higher
internal exposure to dioxin-like PCBs and possibly a
higher level of AHR mediated oxidative stress [73,74]. A
positive correlation with the number of micronuclei in
peripheral blood cells could suggest that increased PCB
118 serum levels might be associated with an increased
risk of cancer, as an increased micronucleus frequency in
peripheral blood lymphocytes was observed to predict the
risk of cancer in humans [44]. Consistent with this, Dem-
ers et al. [75] found that women diagnosed with breast
cancer had significantly higher serum concentrations of
PCB 118 (p = 0.03) and described an association between
breast cancer risk and PCB 118 serum concentration
(odds ratio = 1.60, 95% confidence interval: 1.01, 2.53;
fourth vs. first quartile). Nagayama et al. [76] found that a
mixture of organochlorine compounds resembling the
contamination profile present in the healthy Japanese
population, efficiently induced micronuclei in human
whole blood cultures. Our findings concerning PCB118
and consumption of fish fat are well compatible with the
observations of Nagayama et al. Concerning the observed
positive association between level of micronuclei and

consumption of vegetables, we did not find such an asso-
ciation in published data. On the contrary, there are many
reports on a possible protective effect of a high consump-
tion of fruit and vegetables against DNA-damage [77]. So
it is possible that our observation is a chance finding that
has no implication as to the link between vegetables and
health. Alternatively, it remains possible that our study
population consumed vegetables contaminated by geno-
toxins, such as those found by Feretti et al. [78] in pesti-
cide treated vegetables. Both blood and urinary cadmium
levels and also smoking were associated with micronuclei
in an unexpected way, with an initial (non-significant)
increase in micronuclei, followed by a significant decrease
at higher cadmium levels or higher levels of smoking. As
to the link with smoking, Bonassi et al. [79] also found an
unexpected association. However, contrary to our obser-
vation, they noticed an initial decrease of micronuclei for-
mation with increased smoking frequency followed by a
subsequent increase in very heavy smokers (> 30 ciga-

Categories of blood cadmium concentrations: association with the number of micronucleiFigure 8
Categories of blood cadmium concentrations: association 
with the number of micronuclei.
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p53 levels above p90: association with higher values of the Index of Internal Exposure (Iex)Figure 6
p53 levels above p90: association with higher values of the 
Index of Internal Exposure (Iex).
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p,p'-DDE levels above p90: association with higher serum CEA levelsFigure 7
p,p'-DDE levels above p90: association with higher serum 
CEA levels.
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rettes/day). Bonassi et al. [79] hypothesized that tobacco
smoke may induce damage to lymphocytes, which
renders them unable to survive the culture period or una-
ble to divide. If they don't divide, they will not form binu-
cleated cells and will not be scored for micronuclei
formation. This hypothesis, applied as well to tobacco
smoke as to internal exposure to cadmium, could well
explain our findings.

As stated by Møller et al. [80] the comet assay permits
detection of DNA damage in leukocytes induced by a vari-
ety of lifestyle and environmental exposures, including
exercise, air pollution, sunlight, and diet. We found posi-
tive associations with PCB 118, self-reported occupational
exposure to solvents or halogenated hydrocarbons, nui-
sance from noise during the day, nuisance from noise dur-
ing the night, and indoor stoking of diverse organic
materials. Negative associations were found with con-
sumption of meat fat and self-caught freshwater fish. The
positive association with serum PCB 118 level might rest,
as discussed above for the induction of micronuclei, on
the fact that a higher PCB 118 level reflects a higher inter-
nal exposure to dioxin-like PCBs and possibly a higher
level of AHR mediated oxidative stress. The association
with solvents and halogenated hydrocarbons was already
observed by several authors [80,81]. Although few studies
focus on the effects of noise on DNA-damage, one study
reports a significant increase of DNA-damage in rat adre-
nal glands, which the authors hypothesise is a result of a
disturbance of the redox status of the cells [82]. Burning
of biomass derived fuels was found to contribute substan-
tially to indoor air concentrations of PAH's [83]. Burning
of household garbage and biomass-derived fuels were
found to be important sources of PAH's and benzene [83-
85]. As to the negative association of DNA strand breaks
with meat fat and freshwater fish consumption, we found
no similar data in the literature. On the contrary, dietary

fat is considered to contribute to DNA-damage and cancer
risk [77], and consumption of freshwater fish is consid-
ered to be an important source of pollutants [86,87]. So,
our findings concerning meat fat and consumption of
freshwater fish might be chance findings without rele-
vance. However, consumption of freshwater sport fish
might contribute to intake of protective substances such
as omega-3 fatty acids and thus also confer benefits [88].

8-Hydroxy-deoxy-guanosine (HDG) results from oxida-
tion of the guanine-residue of DNA. HDG levels were
higher in subjects with a higher internal exposure to ben-
zene and polycyclic aromatic hydrocarbons as assessed
through urinary levels of ttMA and 1-OHP respectively.
This was also observed by other authors [89]. Benzene
and polycyclic aromatic hydrocarbons are known for their
potential for inducing oxidative DNA-damage [90,91].
HDG is one of the important promutagenic lesions in
relation to air pollution and lung cancer [92].

Conclusion
Although we found the levels of genotoxic parameters and
of tumor-associated proteins quite homogenous in Flan-
ders, residence near waste incinerators, in cities, or close
to important industries showed a positive correlation with
biomarkers associated with carcinogenesis. Thus, resi-
dence in those areas probably contributed to the risk of
cancer. Whereas for the 'fruit area' with intensive use of
pesticides favourable results were obtained, in some other
rural areas the levels of these biomarkers were not lower
than in the rest of Flanders. In addition, we observed more
intense biological effects occurring in persons residing
near point sources of pollution. This suggests that the rel-
atively high values of internal exposure measured in most

Different smoking categories: association with the number of micronucleiFigure 10
Different smoking categories: association with the 
number of micronuclei. Category 0: non-smokers; cate-
gory 1: persons smoked less than 100,000 cigarettes; cate-
gory 2: persons smoked at least 100,000 but less than 
200,000 cigarettes; category 3: persons smoked at least 
200,000 cigarettes.
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Categories of urinary cadmium concentrations: association with the number of micronucleiFigure 9
Categories of urinary cadmium concentrations: association 
with the number of micronuclei.
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people in Flanders, independent of their area of residence,
are in part due to emissions of point sources, the effects of
which, in terms of both internal exposure and biological
effects, can only be detected in people residing at short
distance. Levels of internal exposure occurring in the gen-
eral population in Flanders showed positive correlations
with biomarkers associated with carcinogenesis and prob-
ably contributed to the risk of cancer.
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