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Abstract
Background: Mercury is known to bioaccumulate and to magnify in marine mammals, which is a cause of great concern
in terms of their general health. In particular, the immune system is known to be susceptible to long-term mercury
exposure. The aims of the present study were (1) to determine the mercury level in the blood of free-ranging harbour
seals from the North Sea and (2) to examine the link between methylmercury in vitro exposure and immune functions
using seal and human mitogen-stimulated peripheral blood mononuclear cells (T-lymphocytes).

Methods: Total mercury was analysed in the blood of 22 harbour seals. Peripheral blood mononuclear cells were
isolated from seals (n = 11) and from humans (n = 9). Stimulated lymphocytes of both species were exposed to functional
tests (proliferation, metabolic activity, radioactive precursor incorporation) under increasing doses of methylmercury
(0.1 to 10 μM). The expression of cytokines (IL-2, IL-4 and TGF-β) was investigated in seal lymphocytes by RT-PCR and
by real time quantitative PCR (n = 5) at methylmercury concentrations of 0.2 and 1 μM. Finally, proteomics analysis was
attempted on human lymphocytes (cytoplasmic fraction) in order to identify biochemical pathways of toxicity at
concentration of 1 μM (n = 3).

Results: The results showed that the number of seal lymphocytes, viability, metabolic activity, DNA and RNA synthesis
were reduced in vitro, suggesting deleterious effects of methylmercury concentrations naturally encountered in free-
ranging seals. Similar results were found for human lymphocytes. Functional tests showed that a 1 μM concentration was
the critical concentration above which lymphocyte activity, proliferation and survival were compromised. The expression
of IL-2 and TGF-β mRNA was weaker in exposed seal lymphocytes compared to control cells (0.2 and 1 μM). Proteomics
showed some variation in the protein expression profile (e.g. vimentin).

Conclusion: Our results suggest that seal and human PBMCs react in a comparable way to MeHg in vitro exposure with,
however, larger inter-individual variations. MeHg could be an additional cofactor in the immunosuppressive pollutant
cocktail generally described in the blood of seals and this therefore raises the possibility of additional additive effects in
the marine mammal immune system.

Published: 29 October 2008

Environmental Health 2008, 7:52 doi:10.1186/1476-069X-7-52

Received: 8 May 2008
Accepted: 29 October 2008

This article is available from: http://www.ehjournal.net/content/7/1/52

© 2008 Das et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18959786
http://www.ehjournal.net/content/7/1/52
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Environmental Health 2008, 7:52 http://www.ehjournal.net/content/7/1/52
Background
Mercury (Hg) is a widely present metal in the environ-
ment, with a major natural source being provided by
degassing from the Earth's crust [1,2]. Its environmental
level has also increased as a consequence of discharge
from various industries, from medical and scientific
waste, and from the processing of raw ores [1,2]. Follow-
ing the discovery in the early 1960s of the dangers to
human health of Hg in the marine environment, there has
been a steady reduction in the man-made discharge of Hg
[3]. However, despite these regulations, a decrease in lev-
els of mercury in the biota, including marine mammals, is
not obvious [3-6].

Methylation of inorganic Hg is a key processes in marine
food webs affected by several variables including temper-
ature [7-10]; It raises serious concerns in the light of glo-
bal change and increasing seawater temperature [9,10].
MeHg has a high bioavailability; it bioaccumulates and
biomagnifies at all trophic levels in the food web and has
severe toxicological effects [11,12]. Fish represent the
major MeHg source for human and marine mammal pop-
ulations [13-17].

High Hg concentration have been documented in the liver
and kidney of marine mammals (from both pristine and
contaminated areas), generally associated to Se in a non
organic form (tiemannite or HgSe) [18-21]. The high rel-
evance of tiemannite precipitation in marine mammals
(compared to other mammals and birds) is likely to be
related to a combination of factors, namely, elevated
MeHg exposure, due to fish eating habits, and the inabil-
ity to excrete MeHg through gills, feathers or fur [21-24].

However, the demethylation process is not "instantane-
ous" and before reaching these long-term accumulation
organs, Hg is assimilated from fish, and is transferred and
transported via the blood stream, mainly in its methylated
form [11,12]. A high percentage of blood Hg concentra-
tion is in a methylated form (up to 90%), especially in
human and marine mammal populations relying on fish
[11,12,25] and so may represent a threat towards blood
cells, including immune cells.

It has been suggested that impairment of immune func-
tion plays a contributing role in the increasing incidence
of infectious diseases in marine mammals. Moreover,
adverse effects of environmental contaminants on the
immune system have often been suggested [26-29]. Infor-
mation on the immune system of harbour seals is quite
well documented. This species has conveniently become
the marine mammal of choice for immunological studies
[27,28]. Interest in the harbour seal has stemmed partly
from earlier captive studies on the reproductive toxicity of
environmental contaminants using this species [30], but

more importantly this interest has occurred as a conse-
quence of recurrent phocine distemper virus (PDV) epiz-
ootics [31-33]. However, despite numerous studies
involving the in vivo and in vitro effects of persistent
organic pollutants [29,34-44], information on the effects
of Hg on the marine mammal immune system and under-
lying mechanisms remains scarce [45-48].

The aims of the present study were (1) to determine T-Hg
levels in the blood of free-ranging harbour seals from the
North Sea and (2) to examine the link between in vitro Hg
exposure at low doses and immune functions using seal
and human mitogen-stimulated peripheral blood mono-
nuclear cells (PBMCs). Seals and humans were exposed in
vitro, using various MeHg concentrations (0.1 to 10 μM),
reflecting the levels encountered in wildlife. MeHg was
chosen as it is the predominant form in the blood of
marine mammals and fish-eating communities
[12,17,49]. We assessed the effects of MeHg on T-cell via-
bility and the proliferative response to mitogen of periph-
eral lymphocytes in both harbour seals and humans. We
also examined the effect of MeHg on the in vitro produc-
tion by seal PBMCs of cytokines IL-2, IL-4 and TGF-β(0.2
and 1 μM). Finally, we attempted through the use of pro-
teomics analysis, to delineate the biochemical pathways
of MeHg in in vitro exposure (1 μM) using a first human
PBMC model.

Methods
Blood sampling
Blood was sampled from 33 harbour seals caught along
the German coast or kept in captivity (Seal Station, Frie-
drichskoog, Germany) between 1997 and 2006 (Table 1).
The seals were physically restrained. Health status was
determined by physical examination, using routine hae-
matological analysis (blood counts) and serum chemistry
(detailed protocol described previously [50]).

Blood was drawn from the extradural venous sinus into
sterile evacuated blood collection Monovette® tubes
(serum tubes for Hg analysis, EDTA tubes for RT-PCR and
heparinised tubes for functional tests and proteomics
analysis). Blood tubes were kept at -20°C until Hg analy-
sis or were processed within 18 hours for cell cultures.

Buffy coats from healthy 30–60 year old male humans (n
= 9) were integrated into this study for the PBMC culture
(Croix Rouge de Belgique).

Mercury analysis
The measurement of the concentration of T-Hg in blood
is generally a good surrogate for the concentration of
MeHg in blood in human populations with a high fish
consumption [12,16]. T-Hg was analysed in full blood
from 22 harbour seals by cold vapour atomic absorption
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spectrometry on a Perkin-Elmer Coleman Mas-50 Mer-
cury Analyser (wavelength 253.7 nm). The freeze-dried
samples were subjected to microwave-assisted digestion
with nitric acid and H2O2, as described previously for
blood and other tissues [51,52]. Quality control measure-
ments for T-Hg included replicate analysis resulting in
coefficients of variation < 10% and analysis of certified
material (DORM-1, NRC, Canada). The Hg absolute
detection limit was 10 ng, corresponding to 0.13 μg.g-1

fresh weight (fw) for an average of 1.5 g of sample ana-
lysed. All samples were above the detection limit.

Cell cultures
Harbour seals
The blood was diluted 1:2 with phosphate-buffered saline
(PBS). Lymphocytes were separated on a Ficoll gradient
(Pashing and Amersham), washed twice in PBS and sus-
pended in culture medium containing 10% foetal calf
serum (Minimum essential Medium, Eagle for cytokine

expression and RPMI 1640 Cambrex added with 1% L-
glutamine and 10% penicillin-streptomycin for func-
tional tests). PBMCs were incubated without mitogen or
in the presence of phytohemaglutinin (PHA, 5 μg.ml-1), a
T-cell-specific mitogen [42,53]. 2 × 105 cells were seeded
in a final volume of 300 μl per well (for cytokine expres-
sion) or 100 μl per well (functional tests). To some of
these wells, CH3HgCl (Sigma-Aldrich) was added in dif-
ferent concentrations (0.1 to 10 μM depending on the
assay). Cells were then incubated for 72 h at 37°C with
5% CO2.

Humans
PBMCs were isolated from buffy coats by using standard
Ficoll/Hypaque (Amersham) gradients and were washed
twice in PBS. The pellet was suspended in the culture
medium (RPMI 1640 supplemented with 10% heat inac-
tivated foetal bovine serum (in vitrogen), 1% L-
glutamine, 10% penicillin-streptomycin; Cambrex). 2 ×

Table 1: Sampling description of harbour seal Phoca vitulina

ID Date Sampling site Sex Length (cm) Body mass (kg) Assay

Pv 455 20/10/97 Lorenzensplate M 117 32 T-Hg
Pv 456 20/10/97 Lorenzensplate F 104 30 T-Hg
Pv 460 20/10/97 Lorenzensplate M 133 49 T-Hg
Pv 2257 09/04/03 Lorenzensplate M 144 68 T-Hg
Pv 2258 09/04/03 Lorenzensplate M 148 63 T-Hg
Pv 2259 09/04/03 Lorenzensplate F 129 38 T-Hg
Pv 2260 09/04/03 Lorenzensplate F 143 48 T-Hg
Pv 2261 09/04/03 Lorenzensplate F 158 56 T-Hg
Pv 2262 09/04/03 Lorenzensplate F 132 46 T-Hg
Pv 2263 09/04/03 Lorenzensplate F 148 55 T-Hg
Pv 2265 09/04/03 Lorenzensplate F 148 55 T-Hg
Pv 2687 25/08/04 Lorenzensplate M 170 84 T-Hg
Pv 2688 25/08/04 Lorenzensplate M 170 82 T-Hg
Pv 2689 25/08/04 Lorenzensplate M 175 80 T-Hg
Pv 2690 25/08/04 Lorenzensplate M 175 90 T-Hg
Pv 2691 25/08/04 Lorenzensplate F 150 58 T-Hg
Pv 2692 25/08/04 Lorenzensplate F 165 70 T-Hg
Pv 2694 25/08/04 Lorenzensplate M 160 75 T-Hg
Pv 2695 25/08/04 Lorenzensplate M 175 87 T-Hg
Pv 2697 25/08/04 Lorenzensplate F 135 42 T-Hg
Pv 2699 25/08/04 Lorenzensplate M 140 40 T-Hg
Pv 2700 25/08/04 Lorenzensplate M 125 39 T-Hg

Kirsa 28/02/05 Seal station F nd 28 Cytokine
Pv 2883 12/04/05 Lorenzensplate M 174 93 Cytokine
Pv 2885 12/04/05 Lorenzensplate M 168 81 Cytokine
Pv 2887 12/04/05 Lorenzensplate M 180 96 Cytokine
Pv 2893 12/04/05 Lorenzensplate M 164 71 Cytokine

Lümmen 31/03/2006
30/07/2006

Seal station M nd 105 Functional tests

Hein 31/03/2006
30/07/2006

Seal station M nd 86 Functional tests

Deern 31/03/2006 Seal station F nd 70 Functional tests
Lilli 28/04/2006 Seal station F nd 54 Functional tests

Mareike 28/04/2006 Seal station F nd 66 Functional tests
Kirsa 28/04/2006 Seal station F nd 35 Functional tests
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105 cells were seeded in 100 μl and were incubated in a
96-well microculture plate (Falco, New Jersey, USA). For
proteomics analysis, 20 ml were deposited in T75 flasks
(Susp Cell Ven green, Sarsted). PHA was diluted in culture
medium at an optimal concentration of 1 μg.ml-1 [54].

Cytokine expression
The expression of the housekeeping gene glyceraldehyde-
3-phosphate (GAPDH), of interleukins-IL-2 and IL-4 and
of the transforming growth factor (TGF)-β was investi-
gated in vitro in control and contaminated seal PBMCs (n
= 6, Table 1) using RT-PCR and real time PCR, as
described elsewhere [53,55,56]. For a quantitative analy-
sis of mRNA expression, a comparison between samples
can be made by relating gene expression levels to house-
keeping gene expression, the latter regarded as being unaf-
fected by exposure conditions. After the incubation period
(72 h), total RNA was isolated from exposed and control
PBMCs (RNeasy® Mini Kit, Qiagen Sciences, Maryland,
USA) following the manufacturer's recommendations.
After DNase-treatment (DNA-free™, Ambion kit), RNA
was reverse transcribed with murine reverse transcriptase
(RNA PCR Core Kit™, Applied Biosystems, Weiterstadt,
Germany) and the resulting cDNA served as a template for
PCR following the manufacturer's protocol and using
Thermocycler MX4000™ (Stratagene Europe). For real-
time quantification, the Brilliant SYBRGreen QPCR Mas-
ter mix (Stratagen Europe) was used [56]. This contained
SYBRGreen I as a fluorescence dye, dNTPs, MgCl2 and a
hot start Taq DNA polymerase. Primers for the PCR were
designed using DNAstarTM software (GATC Biotech, Kon-
stanz, Germany). Primers for the detection of IL-2 and IL-
4 were selected from conserved nucleotide sequences of
grey seals (Halichoerus grypus) and dogs (Canis familiaris)
respectively (GenBank accession numbers AF072871,
AF187322, AF104245). Primer sequences for the amplifi-
cation of GAPDH and TGF-β were selected from previ-
ously published sequences [53] (Table 2).

The fluorescence response was monitored in a linear fash-
ion, as the PCR product was generated over a range of PCR
cycles. For each cytokine, a standard curve was prepared
using a dilution series from 109 to 102 copies. The PCR
started with an initial step at 95°C for 10 min, followed
by 40 cycles with denaturation at 95°C for 1 min, anneal-
ing temperature for 30 sec and elongation at 72°C for 1
min. The fluorescence was measured at the end of the
annealing and at the end of the dissociation program at a
wavelength of 530 nm. In order to exclude measurement
of non specific PCR products and primer dimers, and to
determine true amplification, each PCR was followed by a
dissociation program for 1 min at 95°C, followed by 41
cycles during which the temperature was increased in each
cycle, starting at 55°C and ending at 95°C. Only PCR
reactions with one well-defined peak were used for analy-
sis. All reactions were performed in duplicate and two sep-
arate PCR reactions were performed. GAPDH was used as
the control gene. In order to calculate cytokine expression,
GAPDH was used as the calibration compound. The
cytokine expression index (CI) was calculated as follows:

CI = Number of cytokine copies/Number of GAPDH copies

Viability of PBMCs and functional tests
The viability and number of PHA-stimulated PBMCs were
determined microscopically by trypan blue exclusion
assay and a haemocytometer before and after MeHg expo-
sure.

MTS assay
After 72 hours of MeHg exposure (0.1, 0.2, 0.5, 1, 1.5, 5,
10 μM), the metabolic activity of the cells was quantified
by a colorimetric microtitre plate MTS assay 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulphophenyl)-2H-tetrazolium, inner salt (MTS,
Promega), according to the manufacturer's instructions.
10 μl of prepared MTS solutions were added to the 100 μl
culture medium containing the cells. MTS is chemically
reduced by cells into formazan, which is soluble in culture

Table 2: Primer sequences used for the amplification of cytokine and housekeeping gene transcripts in lymphocytes

Gene Primer sequence (5'-3') Direction Annealing 
temperature

Nucleotide 
position

Calculated 
length of 
amplicon

Sequences used for 
primer pair selection 
(accession number, 

NCBI)

IL-2 TTT AAG TTT TAC ACG CCC AAG
TGT TTC AGA TCC CTT TAG TTTC

S
AS

55°C 218–400 183 pb AF072871

IL-4 ACT CAC CAG CAC CTT TGT CCA
TCC TTA TCG CTT GTT CTT TG

S
AS

49°C 48–200 153 pb AF187322, AF104245

TGF-β TTC CTG CTC CTC ATG GCC AC
GCA GGA GCG CAC GAT CAT GT

S
AS

57°C 826–845
1218–1199

393 pb [51]

GAPDH GCC AAA AGG GTC ATC ATC TC
GGG GCC ATC CAC AGT CTT CT

S
AS

57°C 1225–1244
1452–1433

228 pb [51]

bp = base pair; S = sense; AS = antisense; IL = interleukin; TGF = transforming growth factor
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medium. After 2 h in the dark and in the incubator, the
measurement of the absorbance of the formazan was car-
ried out on a spectrophotometer (Powerwave X, Bio-Tek)
at 492 nm. Each condition was produced in 5 wells.

Incorporation of radioactive precursors
DNA, RNA and protein synthesis were determined by
measuring the amount of incorporated radioactive precur-
sors using a scintillation counter. 2 × 105 cells were seeded
in 200 μl culture medium. During the last 24 h of culture,
1 μCi.ml-1 of methyl-[3H] thymidine (specific activity 20–
40 Ci.mmole-1), [3H] uridine (specific activity 20–40
Ci.mmole-1) or [3H] L-leucine (specific activity 40–60
Ci.mmole-1, MP Biomedicals) was added to each well and
cellular incorporation was determined. Cells were har-
vested on a filter (Multiscreen HTS, Millipore) with a mil-
lipore aspiration system, as described by the
manufacturer's instructions. The following steps were car-
ried out with an automatic dispenser (Precision Power
2000): 100 μl PBS, 120 μl trypsin 10 min, 100 μl PBS, 100
μl ethanol 20 min, 3× 100 μl ethanol. The plates were
dried overnight, and the filters were collected in vials
(Puncher Millipore). 400 μl sodium hypochlorite (1:10
v:v) were then added. After 30 min agitation, 4 ml scintil-
lating liquid (Ready Safe, Beckman) were added and
quantification of the retained radioactivity by the cells
was made by liquid scintillation in a counter (LS 6500
Scintillation system, Beckman). Results from triplicates
(means of counts per minute ± standard deviations) are
expressed in percentages (control taken to be 100%).

Proteomics analysis
Preliminary proteomics analysis (the study of the pro-
teome) was carried out on human PBMCs. We focus this
part of the study on cytoplasmic fraction (soluble pro-
teins). Cells were treated with 1 μM MeHgCl in the pres-
ence of PHA for 72 h. Quantitative analysis was carried
out on 2D DIGE gels in two steps. First, individuals were
treated separately (n = 3) in order to discover interindivid-
ual variability and secondly, individuals were pooled in
order to obtain sufficient amount of proteins to run the
gel.

Protein preparation
After 72 h of MeHg exposure (1 μM), cells were harvested
with PBS. Subcellular perfractionation was performed to
isolate cytosolic proteins, as described previously [57].
Cytosolic proteins were extracted in a hypotonic buffer
(10 mM HEPES, pH 7.4; 10 mM NaCl; KH2PO4 1 mM,
NAHCO3 5 mM, EDTA 5 mM, CACl2 (H2O)2 1 mM,
MgCl2 (H2O)6 0.5 mM and EDTA-free antiproteases
(Roche Molecular Biochemicals) followed by centrifuga-
tion. Pellets were suspended in isotonic buffer (sucrose,
2.5 M) before two centrifugation steps at 6300 g (elimina-
tion of nucleus and large size cellular fragments) and

107,000 g (elimination of organites and membranes).
The different extracts were purified using the 2D Clean-Up
Kit (according to the manufacturer's instructions). After
this purification step, each sample was redissolved in the
DIGE buffer (urea 7 M, thiourea 2 M, Tris-HCl pH 8.8 30
mM, Chaps 1.5%, ABS-14 1.5%). After a second assay,
allowing us to discover the exact concentration of our
extracts, the samples were diluted to a protein concentra-
tion of 5 μg.μl and to pH 8, using DIGE buffer. A Mowse
score (MOlecularWeightSEarch) was calculated, based on
peptide frequency distribution [58].

Protein separation
After extraction, the variations in protein abundance
between the treated (with 1 μM of MeHg) and non-treated
samples were measured using the 2D DIGE technique
(Two Dimension Difference Gel Electrophoresis).

The labelling of both the control fraction (12.5 μg), and
the exposed fractions (12.5 μg) was carried out with 100
pmol of Cye 3 and of Cye 5 respectively. The internal
standard consisted of a mixture of each sample (12.5 μg
per sample) labelled with 1200 pmol of Cye 2. This step
was then followed by incubation on ice for 45 minutes in
the dark. The eventual excess of Cye was eliminated by the
addition of 10-4 mol of lysine on ice for 15 minutes in the
dark. The labelled samples were pooled. In addition 150
μg of unlabelled protein were added to achieve a sufficient
quantity of unlabelled protein required for analysis by
mass spectrometry. A volume of buffer 2× (urea 7 M,
thiourea 2 M, chaps 1.5%, ASB-14 1.5%, destreak reagent
12.5 μl.ml-1, DTT 10 mM, ampholyte 1%) was added in
equivalent quantities to the previously pooled samples.
The final volume of the samples was brought up to 450 μl
with IEF buffer (urea 7 M, thiourea 2 M, chaps 1.5%, ASB-
14 1.5%, destreak reagent 12.5 μl.ml-1, ampholyte 0.5%,
bromophenol blue 0.5%).

The measurement of the first dimension of the gel was car-
ried out on gel strips with a fixed pH gradient (Immo-
biline DryStrip) in an electrical focalisation cell (Protean
IEF cell, Bio-Rad). After active rehydration for 9 h with the
sample, isoelectric focalisation was carried out up to
50,000 Vh overnight. Before the second dimension was
measured, reduction buffer was added for 15 minutes
(DTT 130 mM, urea 6 M, Tris-HCl pH 8.8 0.373 M, glyc-
erol 20%v/v, SDS 2%w/v) followed by the addition of an
alkylation buffer for 15 minutes (iodoacetamide 135 mM,
urea 6 M, Tris-HCl pH 8.8 0.373 M, glycerol 20%v/v, SDS
2%w/v).

The measurement of the second dimension was carried
out overnight after depositing the strips on a 12.5% poly-
acrylamide gel (Tris-HCl pH 8.8 1.5 M, SDS 0.4%w/v, acr-
ylamide/bisacrylamide 40%, ammonium persulphate
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10%w/v, TEMED 0.03%v/v, MilliQ water). The gels were
then placed on non-fluorescing (Bind-Silane) plates
(Ettan-DALT "Low Fluorescence" Casting Cassette, Amer-
sham Biosciences). After migration, the gels were scanned
at the three different wave lengths of the cyanines (Cye2
520 nm bandwidth 40, Cye3 580 nm Bp 30, Cye5 670 nm
Bp 30) using a Typhoon 9400 (Amersham Biosciences),
with a resolution of 100 μm. The images obtained were
analysed using a software program (Decyder 6.0, Amer-
sham Biosciences). Only the regulations ± 1.5 above the
standard deviation were taken into account and compared
with a T Student value at a 95% confidence level.

Mass spectrometry protein identification
The spots of interest, selected using the software program
were excised from the gel, by a spot picker (Ettan Spot
Picker, Amersham Biosciences), and were then placed in
96 well plates for enzymatic digestion (Proteineer dp
automated digester, Bruker). The peptides resulting from
the digestion were spotted onto a prespotted MALDI plate
(AnchorChips, Bruker). The proteins were identified using
an Ultraflex MALDI TOF/TOF (Bruker). The mass values
from the mass fingerprints, and from the MS/MS spectra
were processed within different data bases (Sprot, NCBI,
MSDB). The search engine used was MASCOT, using the
following parameters: the mass tolerance for peptides was
set at ± 60 ppm, the charge state at 1+ and the maximum
number of missed cleavages at 1.

Data analysis
Student's t-test was used for comparing control and
MeHg-treated cells.

Results
Hg levels in the blood of free-ranging seals
T-Hg levels in full blood varied from 0.04 to 0.56 μg.g-1 fw
(43 to 611 μg Hg.L-1) with a mean concentration of 0.16
μg.g-1 fw (Table 3). T-Hg concentrations were found to be
similar between males and females (Student's t-test, p >
0.5) and individuals were therefore regrouped. T-Hg con-
centration in blood was found to be significantly corre-
lated to the body mass (rp = 0.59 and p < 0.001) and
length of the seals (rp = 0.60 and p < 0.001) (Figure 1).

Proliferative response of controls and exposed human and 
seal PBMCs
The PHA-induced proliferative responses of PBMCs col-
lected from seals and humans are shown in Figure 2. A sig-
nificant decrease in the percentage of lymphocyte
proliferation was found at MeHg concentrations of 5 and
10 μM in both seals and humans (Figure 3). Cell mortality
was found to be moderate at 1 and 1.5 μM of MeHg.

Functional tests
A decrease in DNA, RNA and protein synthesis was
observed even at low MeHg concentrations (0.2 and 1
μM), whereas inhibition of synthesis was clearly noticed
at 10 μM (Figure 4). DNA, RNA and protein synthesis
showed a similar profile but nucleic acid synthesis seemed
more inhibited compared to proteins. After 48 h, the con-
centrations inhibiting 50% of DNA and RNA synthesis of
the two species were found to be around 1 μM and 1.5
μM, while the 50% protein synthesis inhibiting concen-
tration was found to be around 1.5 μM.

Table 3: Total Hg concentrations in blood of pinniped species

Species Location, year Condition Reference Concentration

μg.L-1 μg.g-1 fw

Phoca vitulina North Sea.
(1997–2004)

Free-ranging seals this work 172 ± 143
(43–611)
n = 22

0.16 ± 0.13
(0.04 – 0.56)

n = 22
Phoca groenlandica NW Atlantic Captive seal

(before MeHg exposure)
[61] 80 ± 40

(n = 6)
nd

Phoca groenlandica Gulf of St Lawrence
(1976 – 1978)

Free-ranging adult seals [62] nd Males: 0.15 ± 0.02
n = 2

Females: 0.07 ± 0.04
n = 48

Phoca groenlandica Front ice off Newfoundland – Labrador
(1976–1978)

Free-ranging adult seals [62] nd Males: 0.04 ± 0.02
n = 3

Females: 0.02
n = 1

Leptonychotes weddellii Antarctic
1980

Free-ranging seals [63] nd 0.02
n = 2

Callorhinus ursinus Alaska, 1972 Wild nursing cows [85] nd 0.099
n = 2

mean ± standard deviation, n = number of samples analysed, nd = not determined
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Relationship between body mass (graph on top) and length (graph on the bottom) and T-Hg concentrations in blood of har-bour sealsFigure 1
Relationship between body mass (graph on top) and length (graph on the bottom) and T-Hg concentrations in 
blood of harbour seals.
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The MTS assay (water soluble tetrazolium salts) reflects
cell proliferation and the metabolic activity of the
mitogen-stimulated lymphocytes. Metabolic activity was
significantly reduced compared to the controls at around
1 μM both for human and seal cells (Figure 5).

Detection of housekeeping gene and cytokines
In this set of experiments, seal PBMCs were cultured in the
presence of non-cytotoxic doses of MeHg (0.2 and 1 μM)
in order to examine mRNA expression. GAPDH, IL-2, IL-4
and TGF-β mRNA were successfully detected in both con-
trolled and exposed PBMCs (Figures 6, 7, 8). As a general
feature, change in mRNA expression occurred after expo-
sure: the number of copies decreased at 0.2 μM, except for
IL-4. The large dispersion of data between seals (coeffi-
cient of variation ≤ 68%) indicated high grade inter-indi-
vidual variability in cytokine mRNA responses. Cytokine
indexes were strikingly low for IL-2 and TGF-β even at 0.2
μM (Figures 6 and 7), while an increasing trend was
observed for IL-4 (Figure 8).

Proteomics analysis
Most of the proteins had an Ip of between 3 and 10. A
Mowse score was calculated for each identification, which

was considered as significant above 54 (Additional file 1).
Low doses of MeHg (1 μM) were found to affect cytoplas-
mic protein expression. Proteins are generally less
expressed in treated gels. Volume ratio (expression of pro-
tein in treated gel compared to control) was positive
(over-expression) for spot 1142 and spot 1452 but nega-
tive (lower-expression) for spots 1319 (vimentin), 897
and 923 (Table 2, Figures 9 and 10). These results showed
that the identified proteins are involved in many cellular
functions such as cell proliferation (SYW), the building of
the cytoskeleton (VIME), protein degradation (PRS10),
melatonin biosynthesis and the creation of transduction
pathways (GBLP, AN32A) (Additional file 1).

Discussion
In the present study, T-Hg concentrations in the blood of
harbour seals were found to vary widely, correlated to
length and body mass of the seals (Figure 1). The observed
correlation reflects daily Hg intake and thus, the amount
of fish ingested, which differs according the body mass of
animals. Adult harbour seals eat 5% to 6% of their body
weight per day, up to 7 kg for big individuals [59,60]. T-
Hg levels measured in the blood of harbour seals caught
in the North Sea are higher than those previously

Response of control PBMCs to PHA after 72 h of stimulationFigure 2
Response of control PBMCs to PHA after 72 h of stimulation. Results are expressed as a percentage expressed rela-
tive to the initial 2.106 cells per ml of culture medium. PHA concentration: 5 and 1 μg.ml-1 for harbour seals and humans 
respectively.
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described in North Atlantic or in Arctic regions (Table 3)
[61-63]. Interestingly, the level of T-Hg in the blood of
harbour seals from the North Sea is not lower than that
encountered in other seal species 30 years ago. Similarly,
Hg levels have not decreased in Arctic biota despite the
recent reductions in emissions in North America and
Western Europe [4-6].

A commonly used reference interval for human beings is
0.6 – 59 μg.L-1[64,65]. Clear signs of Hg toxicity develop
in most individuals only at some point much higher than
the upper reference limit. The Environmental Protection
Agency (USA) has recommended that blood Hg levels
should not be higher than 5.8 μg.L-1, at least for the more
sensitive individuals such as pregnant women [17]. A
study of a human cohort with high fish consumption in
the Faroe Islands found a median cord blood concentra-
tion of 24 μg.L-1 [66]. Obviously, the harbour seals we
studied from the North Sea displayed higher concentra-
tions (mean Hg concentration = 172 μg.L-1, around 1
μM). Knowing that Hg is mainly under a methylated form
in the blood of marine mammals (up to 90%), questions
arise regarding the potential biochemical effects of these
Hg levels on harbour seals and human immune cells. To
tentatively answer this question, a set of in vitro experi-
ments were carried out on T-lymphocytes using low MeHg
exposure (around 1 μM).

We exposed harbour seal and human lymphocytes in vitro
to MeHg and we examined the effects on cell-mediated
immunity: cell mortality, synthesis of DNA, RNA and pro-
tein and metabolic activity. Cell mortality was reduced in
the interval 0.1–1 μM (Figure 3) both for human and seal
PHA-stimulated PBMCs. Up to 90% of cells exposed to 1
– 1.5 μM of MeHg remained alive. However, a clear sup-
pressive effect of MeHg on DNA, RNA and protein synthe-
sis in seal and human PBMCs was found to be present,
even at low concentrations. Protein synthesis seemed less
affected, probably due to a longer response time (Figure
4). Proliferation and metabolic activity reflected by MTS
assay confirmed that 1 μM was a critical concentration
with significantly reduced in vitro activity of human and
seal PBMCs relative to controls (Figure 5). No striking dif-
ference appeared between human and seal in vitro resist-
ance to MeHg. At higher concentrations, 5–10 μM, 75% of
cells remained alive, but metabolic activity dropped to
very low levels.

Cytokine expression also decreased following MeHg
exposure: IL-2 and TGF-β seemed highly sensitive to in
vitro MeHg exposure in regard to their dramatic decrease
in gene expression at 0.2 μM and 1 μM compared to con-
trols (Figures 6, 7, 8). However, large inter-individual var-
iability has previously been observed and cytokine
expression in seal PBMCs has been found to vary widely,
depending also on the duration of MeHg exposure [48]. A
decrease in PBMC IL-2 expression has also been docu-

Percentage of surviving cells estimated by Trypan blue coloration after 72 h of MeHg exposureFigure 3
Percentage of surviving cells estimated by Trypan blue coloration after 72 h of MeHg exposure. * p < 0.05; **, p 
< 0.01 relative to control PBMCs 100%. 5 wells per condition for both species. Humans: n = 8 for 0.1 μM and 1 μM; n = 3 for 
other concentrations. Harbour seals: n = 5 for 1 μM and n = 2 for other concentration.
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Effects of MeHg exposure concentration on DNA (3H-thymidine), RNA (3H-uridine) and proteins (3H-leucine) in PBMCsFigure 4
Effects of MeHg exposure concentration on DNA (3H-thymidine), RNA (3H-uridine) and proteins (3H-leucine) 
in PBMCs. Results from quadruplets (means of counts per minute ± standard deviation, n = 4) are expressed in percentages 
(control taken to be 100%).
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mented in harbour seals following in vitro exposure to
PHA and PCB [37], raising the possibility of additive
effects of MeHg and other organic pollutants.

IL-2 has a prime role in immune response, as it is respon-
sible for T-cell clonal expansion after antigen recognition.
IL-2 also increases synthesis of other T-cell cytokines, pro-
motes the proliferation and differentiation of NK cells,
and acts as a growth factor and stimulus for B-cell anti-
body synthesis. TGF-β is often considered as an anti-
inflammatory cytokine [67,68]. A variety of murine mod-
els have provided evidence that eliminating TGF-β or dis-
rupting its downstream signalling cascade leads to
inflammatory disease [69].

In contrast, in the present study, the cytokine index of IL-
4 showed an increasing trend from control to 1 μM (Fig-
ure 8). IL-4 is known to induce the differentiation of naive
helper T cells (Th0 cells) into Th2 cells. Similarly, Devos
et al. found that inorganic mercury (HgCl2) and MeHg
was capable of increasing IL-4 production in Con A-stim-
ulated human PBMC in vitro [70]. They also observed that
IL-4 production occurred in a dose-dependent fashion,
although MeHg was found to be much more potent than
inorganic mercury in inducing IL-4 production [70]. Fur-

thermore, they observed MeHg induced IL-4 production
at a similar range of concentrations to those found in our
own investigation (0.1–0.5 uM) [70].

These preliminary in vitro results suggest that MeHg could
induce a differentiation of naïve cells (increase of IL-4),
while T-lymphocyte clonal expansion is inhibited
(decrease of IL-2); a decrease in TGF-β suggests an increase
in inflammatory response and would require further
investigation such as through a polynuclear cell model.
Our findings are consistent with those of previous
researchers working with human and rodent systems and
support a hypothesis of contaminant-altered lymphocyte
function mediated (at least in part) by the disruption of
cytokine production (TH2 cells) [34,37,71,72]. Whether
this phenomenon has clinical relevance in marine mam-
mal populations remains to be determined.

Study of the proteome
Proteomics facilitates the identification of new biomark-
ers of chemical exposure and studies of mechanisms by
which protein modification contribute to the adverse
effects of environmental exposure [73,74]. The proteome
of T-lymphocytes is well known [75-77]. However, the
expression of proteins in MeHg-exposed T-lymphocytes

MTS activity of human and seal PBMC relative to MeHg exposureFigure 5
MTS activity of human and seal PBMC relative to MeHg exposure. * p < 0.05; **, p < 0.01 relative to control PBMCs 
100%. For humans: n = 7 for 0.1 μM and 1 μM; n = 3 for other concentrations. For harbour seals: n = 5 for 1 μM and n = 2 for 
other concentrations. 5 wells per condition for both species.
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has not yet been described. Our results showed that iden-
tified proteins are involved in many cellular functions
such as cell proliferation (SYW), the building of the
cytoskeleton (VIME), protein degradation (PRS10), mela-
tonin biosynthesis (ASML) and the creation of transduc-
tion pathways (GBLP, AN32A). Human lymphoid cells
are an important physiological source of melatonin,
which could be involved in the regulation of the human
immune system [78]. As a general feature, many spots are
underexpressed in exposed gels, reflecting the inhibition
of protein synthesis linked to MeHg toxicity. As for
cytokine mRNA expression, high variability between indi-
viduals was evidenced here contrasting with functional
tests displaying weaker inter-individual variations. This
feature raises several issues within the framework of indi-
vidual susceptibility to pollutants.

Some of the proteins identified here are in agreement with
previous research describing MeHg toxicity mechanisms
leading to cell death. MeHg exposure is known to induce
a rapid and sustained increase in intracellular calcium lev-
els [79,80]. The earliest detectable event following MeHg
exposure is a change in the level of mitochondria [81].

Exposure of T-Cells to MeHg chloride has been found to
cause a decrease in the overall size of mitochondria and
changes in the structure of the cristae, leading finally to
apoptosis. [81,82]. A previous study observed the expres-
sion and activation of different caspases after 16 h of treat-
ment with MeHg [82]. Caspases are cysteine proteases that
are essential for executing apoptosis and for degrading
vimentin [83,84]. The lower vimentin expression found
here in exposed MeHg lymphocytes agrees with this cas-
pase activation.

In this study, we found that exposure for 72 hours in vitro
to 1 μM of MeHg affected not only cell proliferation but
also many cellular functions such as the building of the
cytoskeleton, melatonin biosynthesis, the creation of sig-
nal transduction pathways and signal transcription. This
variability in affected cellular functions suggests various
toxicity pathways, depending on duration of exposure,
MeHg concentration, cell type and individual susceptibil-
ity. This study shows the potential of using a proteomics
approach in deciphering the intracellular changes in cells
exposed in vitro to MeHg.

Cytokine index of IL-2 mRNA in function of MeHg exposureFigure 6
Cytokine index of IL-2 mRNA in function of MeHg exposure. Results are expressed in mRNA copy numbers per 
GAPDH mRNA copy. The mean and standard deviation on the mean of four individuals, carried out in duplicate, are shown.
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Conclusion
The T-Hg level analysed in the blood of wild harbour seals
from the German North Sea are high compared to previ-
ous studies on marine mammals and humans. The T-Hg
level observed reflects both seal piscivorous habits and the
contamination of the North Sea. Our cell model revealed
an in vitro immunosuppressive effect of MeHg, even at low
concentrations (0.2 and 1 μM). Although the in vitro
approach utilised in this investigation represents an
extreme reductionism relative to the complex situation in
the intact organism, it can provide an insight into specific
effects of model agents. However, many questions are
raised. One is the biological relevance of these in vitro phe-
nomena. In this regard, concentrations of Hg that are
active in vitro are comparable to those found in seal blood.
A second question, related to the issue of potential biolog-
ical relevance, is whether increased levels of mercury in
seals are epidemiologically associated with immunologi-
cal alterations (e.g. epizootics). This question is debata-
ble, as the association between mercury and health is well
documented for humans but is less evident for marine
mammals, which are believed to be more resistant to Hg
exposure. Our results suggest that seal and human PBMCs

react in a comparable way to MeHg in vitro exposure with,
however, larger inter-individual variations. MeHg could
be an additional cofactor in the immunosuppressive pol-
lutant cocktail generally described in the blood of seals
and this therefore raises the possibility of additional addi-
tive effects in the marine mammal immune system.
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Cytokine Index of TGF-β mRNA in function of MeHg exposureFigure 7
Cytokine Index of TGF-β mRNA in function of MeHg exposure. Results are expressed in mRNA copy numbers per 
GAPDH mRNA copy. The mean and standard deviation on the mean of four individuals, carried out in duplicate, are shown.
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Cytokine Index of IL-4 mRNA in function of MeHg exposureFigure 8
Cytokine Index of IL-4 mRNA in function of MeHg exposure. Results are expressed in mRNA copy numbers per 
GAPDH mRNA copy. The mean and standard deviation on the mean of four individuals, carried out in duplicate, are shown.
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2D-Dige Gel with cytoplasmic proteins extracted from one human control and treated PBMCsFigure 9
2D-Dige Gel with cytoplasmic proteins extracted 
from one human control and treated PBMCs. Each of 
the 3 individuals were analysed separately. O: excised spot 
for further protein identification. IPG strip pH 3 to 10.

2D-Dige Gel with cytoplasmic proteins extracted from human control and treated PBMCsFigure 10
2D-Dige Gel with cytoplasmic proteins extracted 
from human control and treated PBMCs. Cytoplasmic 
proteins extracted from 3 individuals were pooled for this 
gel. O: excised spot for further protein identification. IPG 
strip pH 3 to 10.



Environmental Health 2008, 7:52 http://www.ehjournal.net/content/7/1/52
Authors' contributions
KD conceived of the study and participated in its design
and coordination, provided expert advice on Hg exposure
and drafted the manuscript. US participated in the study
design, coordinated the sample collection and provided
expert advice on seals. CD, AG and AD contributed to
sample preparation and data acquisition. SF contributed
to the study design and provided expert advice on
cytokines. GM and EDP provided expert advice on pro-
teomics. MCDPG participated in the study design, pro-
vided expert advice on cell culture and functional tests
and contributed to the preparation of the manuscript. All
authors read and approved the final manuscript.

Additional material

Acknowledgements
This study was supported by the European Commission (MERG-CT-2004-
012893), by Fonds de la Recherche Scientifique (FNRS-FRS Convention n° 
2.4502.07) and by the Centre d'Analyse de Résidus en Traces (CART, Uni-
versity de Liège, co-financed by the Région Wallonne and Fonds Social 
Européen). K. Das is supported by FNRS-FRS. The authors wish to thank 
T. Rosenberger (Seal Station, Friedrichskoog, Germany), Dr J. Driver, Sch-
leswig-Holstein Wadden Sea National Park Office, Schleswig-Holstein 
Wadden Sea National Park Service, IFM-GEOMAR, FTZ and other col-
leagues for seal blood sampling. Funding for seal catches was provided by 
the Schleswig-Holstein Wadden Sea National Park Office. La Croix Rouge 
de Belgique provided us with human buffy coats. R. Biondo is gratefully 
acknowledged for technical assistance during analyses. Great thanks to J. 
Schnitzler for logistical assistance and help in blood transport. Great thank 
to P. Bustamante and C. Sonne for their constructive comments on an ear-
lier version of the manuscript. This is a MARE publication 153.

References
1. Vostal J: Transport and transformation of mercury in nature

and possible route of exposure.  In Mercury in the Environment
Edited by: Friberg L, Vostal J. Cleveland: CRC Press; 1972:15-28. 

2. Clarck RB: Marine Pollution.  Oxford: Oxford University Press;
2001. 

3. Ospar Commission: Quality satus report 2000.  Ospar Commis-
sion: Ospar Commission; 2000:1-108 + vii. 

4. Dietz R, Riget FF, Born EW, Sonne C, Grandjean P, Kirkegaard M,
Olsen MT, Asmund G, Renzoni A, Baagoe H, et al.: Trends in mer-
cury in hair of Greenlandic Polar Bears (Ursus maritimus) dur-
ing 1892–2001.  Env Sci Technol 2006, 40(4):1120-1125.

5. Arctic Monitoring and Assessment Programme: Heavy Metals in
the Arctic.  In AMAP Assessment 2002 Oslo, Norway; 2005:xvi + 265. 

6. Riget F, Dietz R, Born EW, Sonne C, Hobson KA: Temporal trends
of mercury in marine biota of west and northwest Green-
land.  Mar Pollut Bull 2007, 54(1):72-80.

7. Mason RP, Sheu GR: Role of the ocean in the global mercury
cycle.  Glob Biogeochem Cycles 2002, 16(4):41-40.

8. Morel FMM, Kraepiel AML, Amyot M: The chemical cycle and
bioaccumulation of mercury.  Annu Rev Ecol Syst 1998,
29:543-566.

9. Downs SG, Macleod CL, Lester JN: Mercury in precipitation and
its relation to bioaccumulation in fish: a literature review.
Water Air Soil Pollut 1998, 108:149-187.

10. Wiener JG, Bodaly RA, Brown SS, Lucotte M, Newman MC, Porcella
DB, Reash RJ, Swain EB: Monitoring and evaluating trends in
methylmercury accumulation in aquatic biota.  In Ecosystem
responses to mercury contamination: Indicators of change Edited by: Har-
ris R, Krabbenhoft DP, Mason RP, Murray MW, Reash R, Saltman T.
Pensacola: CRC Press; 2003:87-122. 

11. Wolfe MF, Schwarzbach S, Sulaiman RA: Effects of mercury on
wildlife: a comprehensive review.  Environ Toxicol Chem 1998,
17:146-160.

12. NRC: Toxicological Effects of Methylmercury.  Washington,
DC: National Academy Press; 2000. 

13. Baeyens W, Leermakers M, Papina T, Saprykin A, Brion N, Noyen J,
De Gieter M, Elskens M, Goeyens L: Bioconcentration and
biomagnification of mercury and methylmercury in North
Sea and Scheldt estuary fish.  Arch Environ Contam Toxicol 2003,
45(4):498-508.

14. Bloom NS: On the methylmercury content of fish.  Can J Fish
Aquat Sci 1992, 49:1131-1140.

15. Storelli MM, Stuffler RG, Marcotrigiano GO: Total and methylm-
ercury residues in tuna-fish from the Mediterranean sea.
Food Addit Contam 2002, 19(8):715-720.

16. Berglund M, Lind B, Bjornberg K, Palm B, Einarsson O, Vahter M:
Inter-individual variations of human mercury exposure
biomarkers: a cross-sectional assessment.  Environ Health 2005,
4(1):20.

17. Schober SE, Sinks TH, Jones RL, Bolger PM, McDowell M, Osterloh J,
Garrett ES, Canady RA, Dillon CF, Sun Y, et al.: Blood mercury lev-
els in US children and women of childbearing age, 1999–
2000.  JAMA 2003, 289(13):1667-1674.

18. AMAP: Heavy Metals in the Arctic.  In AMAP (Arctic Monitoring and
Assessment Programme) Assessment 2002 Oslo, Norway; 2005:xvi +
265. 

19. Das K, Debacker V, Pillet S, Bouquegneau JM: Heavy metals in
marine mammals.  In Toxicology of Marine Mammals Edited by: Vos
JG, Bossart G, Fournier M, O'Shea T. Washington DC: Taylor and
Francis Publishers; 2003:135-167. 

20. Nigro M, Leonzio C: Intracellular storage of mercury and sele-
nium in different marine vertebrates.  Mar Ecol Prog Ser 1996,
135:137-143.

21. Woshner VM, O'Hara TM, Eurell JA, Wallig MA, Bratton GR, Suydam
RS, Beasley VR: Distribution of inorganic mercury in liver and
kidney of beluga and bowhead whales through autometallo-
graphic development of light microscopic tissue sections.
Toxicol Pathol 2002, 30:209-215.

22. Drouguet O, Vijver I Van de, Jauniaux T, Reijnders PJH, Siebert U, Das
K: Ecological and pathological factors related to trace metal
concentrations in the harbour seal (Phoca vitulina).  2008.

23. Sonne C, Dietz R, Leifsson P, Asmund G, Born E, Kirkegaard M: Are
liver and renal lesions in East Greenland polar bears (Ursus
maritimus) associated with high mercury levels?  Environ Health
2007, 6(1):11.

24. Nigro M, Campana A, Lanzillotta E, Ferrera R: Mercury exposure
and elimination rates in captive bottlenose dolphin.  Mar Pollut
Bull 2002, 44:1071-1075.

25. Booth S, Zeller D: Mercury, food webs, and marine mammals:
implications of diet and climate change for human health.
Environ Health Perspect 2005, 113(5):521-526.

26. Siebert U, Joiris C, Holsbeek L, Benke H, Failing K, Frese K, Petzinger
E: Potential relation between mercury concentrations and
necropsy findings in Cetaceans from German waters of the
North and Baltic Seas.  Mar Pollut Bull 1999, 38:285-295.

27. Ross PS, Beckmen KB, Pillet S: Immunotoxicology of free-rang-
ing pinnipeds: Approaches to study design.  In Toxicology of
Marine Mammals Edited by: Vos JG, Bossart G, Fournier M, O'Shea T.
Washington DC: Taylor and Francis Publishers; 2003:570-591. 

28. Ross PS, Vos JG, Osterhaus ADME: The immune system, envi-
ronmental contaminants and virus-associated mass mortali-
ties among pinnipeds.  In Toxicology of Marine Mammals Edited by:
Vos JG, Bossart G, Fournier M, O'Shea T. Washington DC: Taylor
and Francis Publishers; 2003:534-557. 

29. Vos JG, Ross PS, de Swart RL, van Loveren H, Osterhaus ADME: The
effects of chemical contaminants on immune function in har-
bour seals: results of a semi-field study.  In Toxicology of Marine

Additional file 1
Table 4. Expression of identified proteins after spot excision.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
069X-7-52-S1.doc]
Page 15 of 17
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1476-069X-7-52-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17049950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17049950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17049950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14708666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14708666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14708666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12227935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12227935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16202128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16202128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16202128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12672735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12672735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12672735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11950164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11950164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17439647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12474968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12474968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15866757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15866757


Environmental Health 2008, 7:52 http://www.ehjournal.net/content/7/1/52
Mammals Edited by: Vos JG, Bossart G, Fournier M, O'Shea T. Wash-
ington DC: Taylor and Francis Publishers; 2003:558-570. 

30. Reijnders PJH: Reproductive failure in common seals feeding
on fish from polluted coastal waters.  Nature 1986, 324:456-457.

31. Dietz R, Heide-Jorgensen MP, Harkonen T: Mass deaths of har-
bour seals (Phoca vitulina) in Europe.  Ambio 1989, 18:258-264.

32. Ross PS: The role of immunotoxic environmental contami-
nants in facilitating the emergence of infectious diseases in
marine mammals.  Hum Ecol Risk Assess 2002, 8(2):277-292.

33. Müller G, Wohlsein P, Beineke A, Haas L, Greiser-Wilke I, Siebert U,
Fonfara S, Harder T, Stede M, Gruber AD, et al.: Phocine distem-
per in German seals, 2002.  Emerg Infect Dis 2004, 10:723-725.

34. De Guise S, Martineau D, Beìland P, Fournier M: Effects of in vitro
exposure of beluga whale leukocytes to selected organochlo-
rines.  J Toxicol Env Health 1998, 55(7):479-493.

35. Levin M, Leibrecht H, Mori C, Jessup D, De Guise S: Immunomod-
ulatory effects of organochlorine mixtures upon in vitro
exposure of peripheral blood leukocytes differ between free-
ranging and captive southern sea otters (Enhydra lutris).  Vet
Immunol Immunopathol 2007, 119(3–4):269-277.

36. de Swart RL, Ross PS, Timmerman HH, Vos HW, Reijnders PJH, Vos
JG, Osterhaus ADME: Impaired cellular immune response in
harbour seals (Phoca vitulina) feeding on environmentally
contaminated herring.  Clin Exp Immunol 1995, 101(3):480-486.

37. Neale JC, Kenny TP, Tjeerdema RS, Gershwin ME: PAH- and PCBs-
induced alterations of protein tyrosine kinase and cytokine
gene transcription in harbour seal (Phoca vitulina) PBMC.
Clin Dev Immunol 2005, 12:91-97.

38. de Swart R, Ross P, Vos JG, Osterhaus ADME: Impaired immunity
in harbour seals (Phoca vitulina) exposed to bioaccumulated
environmental contaminants: review of a long-term feeding
study.  Environ Health Perspect 1996, 104(Suppl 4):.

39. de Swart RL, Ross PS, Vedder LJ, Timmerman HH, Heisterkamp S, van
Loveren H, Vos JG, Reijnders PJH, Osterhaus ADME: Impairment
of immune function in harbor seals (Phoca vitulina) feeding
on fish from polluted waters.  Ambio 1994, 23(2):155-159.

40. Neale JC, Water JA Van De, Harvey JT, Tjeerdema RS, Gershwin ME:
Proliferative response of harbour seal T-lymphocytes to
model marine pollutants.  Dev Immunol 2002, 9:215-221.

41. Neale JC: Contaminant-induced immune alterations in the
Pacific harbor seal, Phoca vitulina richardsi, of the central
coast and San Francisco Estuary.  Initiative UMCCEQ. Davis:
University of California; 2003. 

42. de Swart R, Klute RM, Huizing CJ, Vedder LJ, Reijnders PJ, Visser IK,
Uyt de Haag FG, Osterhaus AD: Mitogen and antigen induced B
and T cell responses of peripheral blood mononuclear cells
from the harbour seal (Phoca vitulina).  Vet Immunol Immun-
opathol 1993, 37:217-230.

43. Nakata H, Sakakibara A, Kanoh M, Kudo S, Watanabe H, Nagai N,
Miyazaki N, Asano Y, Tanabe S: Evaluation of mitogen-induced
responses in marine mammal and human lymphocytes by in-
vitro exposure of butyltins and non-ortho coplanar PCBs.
Environ Pollut 2002, 120(2):245-253.

44. Levin M, Morsey B, Mori C, De Guise S: Specific non-coplanar
PCB-mediated modulation of bottlenose dolphin and beluga
whale phagocytosis upon in vitro exposure.  J Toxicol Env Health
2004, 67(19):1517-1535.

45. Pillet S, Lesage V, Hammill M, Cyr DG, Bouquegneau J-M, Fournier M:
In vitro exposure of seal peripheral blood leukocytes to dif-
ferent metals reveal a sex-dependent effect of zinc on phago-
cytic activity.  Mar Pollut Bull 2000, 40(11):921-927.

46. Lalancette A, Morin Y, Measures L, Fournier M: Contrasting
changes of sensitivity by lymphocytes and neutrophils to
mercury in developing grey seals.  Dev Comp Immunol 2003,
27(8):735-747.

47. Kakuschke A, Valentine-Thon E, Griesel S, Fonfara S, Siebert U,
Prange A: Immunological impact of metals in harbor seals
(Phoca vitulina) of the North Sea.  Env Sci Technol 2005,
39(19):7568-7575.

48. Kakuschke A, Valentine-Thon E, Fonfara S, Kramer K, Siebert U,
Prange A: Different influences of methyl-, phenyl-, ethylmer-
cury and mercurychloride on immune functions in harbor
seals.  2008 in press.

49. Stavros HC, Bossart GD, Hulsey TC, Fair PA: Trace element con-
centrations in blood of free-ranging bottlenose dolphins

(Tursiops truncatus): Influence of age, sex and location.  Mar
Pollut Bull 2008, 56(2):371-379.

50. Hasselmeier I, Fonfara S, Driver J, Siebert U: Differential hematol-
ogy profiles of free-ranging, rehabilitated, and captive har-
bor seals (Phoca vitulina) of the German North Sea.  Aquat
Mamm 2008, 34(2):149-156.

51. Das K, De Groof A, Jauniaux T, Bouquegneau J-M: Zn, Cu, Cd and
Hg binding to metallothioneins in harbour porpoises Phoc-
oena phocoena from the southern North Sea.  BMC Ecol 2006,
6(1):2.

52. Guirlet E, Das K, Girondot M: Maternal transfer of trace ele-
ments in leatherback turtles (Dermochelys coriacea) of
French Guiana.  Aquat Tox 2008, 88(4):267-276.

53. Beineke A, Siebert U, van Elk N, Baumgartner W: Development of
a lymphocyte-transformation-assay for peripheral blood
lymphocytes of the harbor porpoise and detection of
cytokines using the reverse-transcription polymerase chain
reaction.  Vet Immunol Immunopathol 2004, 98(1–2):59-68.

54. Cellier N: Etude comparative de la cytotoxicité de composés
polychlorés et polybromés sur le système immunitaire
humain.  Liège: Université de Liège; 2004. 

55. Sonne C, Fonfara S, Dietz R, Kirkegaard M, Letcher RJ, Shahmiri S,
Andersen S, Moller P: Multiple cytokine and acute-phase pro-
tein gene transcription in West Greenland sledge dogs
(Canis familiaris) dietary exposed to organic environmental
pollutants.  Arch Environ Contam Toxicol 2007, 53(1):110-118.

56. Fonfara S, Siebert U, Prange A: Cytokines and acute phase pro-
teins as markers for infection in harbor porpoises (Phocoena
phocoena).  Mar Mammal Sci 2007, 23(4):931-942.

57. Guillemin I, Becker M, Ociepka K, Friauf E, Nothwang HG: A subcel-
lular prefractionation protocol for minute amounts of mam-
malian cell cultures and tissue.  Proteomics 2005, 5(1):35-45.

58. Pappin DJ, Hojrup P, Bleasby AJ: Rapid identification of proteins
by peptide-mass fingerprinting.  Curr Biol 1993, 3:327-332.

59. Zhao L, Castellini MA, Schell DM: Metabolic adjustments to var-
ying protein intake in harbour seals (Phoca vitulina): Evi-
dence from serum free amino acids.  Physiol Biochem Zool 2006,
79:965-976.

60. Bjorge A, Bekkby T, Bakkestuen V, Framstad E: Interactions
between harbour seals, Phoca vitulina, and fisheries in com-
plex coastal waters explored by combined Geographic Infor-
mation System (GIS) and energetic modeling.  ICES J Mar Sci
2002, 59:29-42.

61. Ronald K, Tessaro SV, Uthe JF, Freman HC, Frank R: Methylmer-
cury poisoning in the harp seal (Pagophilus groelandicus).  Sci
Total Environ 1977, 8:1-11.

62. Ronald K, Frank RJ, Dougan J: Pollutants in harp seals (Phoca
groenlandica) II. Heavy metals and selenium.  Sci Total Environ
1984, 38:153-166.

63. Yamamoto Y, Honda K, Hidaka H, Tatsukawa R: Tissue distribu-
tion of heavy metals in Weddell seals (Leptonychotes weddel-
lii).  Mar Pollut Bull 1987, 18:164-169.

64. Nuttall KL: Interpreting mercury in blood and urine of individ-
ual patients.  Ann Clin Lab Sci 2004, 34(3):235-250.

65. Bjorkman L, Lundekvam B, Laegreid T, Bertelsen B, Morild I, Lilleng P,
Lind B, Palm B, Vahter M: Mercury in human brain, blood, mus-
cle and toenails in relation to exposure: an autopsy study.
Environ Health 2007, 6:30.

66. Grandjean P, Weihe P, Jorgensen PJ, Clarkson T, Cernichiari E, Videro
T: Impact of maternal seafood diet on fetal exposure to mer-
cury, selenium, and lead.  Arch Environ Health 1992, 47:185-195.

67. Lawrence DA: Transforming Growth Factor beta.  In Les
Cytokines Edited by: Cavaillon JM. Paris: Editions Masson;
1996:367-382. 

68. Wahl SM, Orenstein JM, Chen W: TGF-β influences the life and
death decisions of T-lymphocytes.  Cytokine Growth Factor Rev
2000, 11:71-79.

69. Hanada T, Yoshimura A: Regulation of cytokine signaling and
inflammation.  Cytokine Growth Factor Rev 2002, 13(4–5):413-421.

70. Devos S, Heuvel R Van Den, Hooghe R, Hooghe-Peters E: Limited
effect of selected organic pollutants on cytokine production
by peripheral blood leukocytes.  Eur Cytokine Netw 2004,
15:145-151.

71. de Vos G, Abotaga S, Liao Z, Jerschow E, Rosenstreich D: Selective
Effect of Mercury on Th2-Type Cytokine Production in
Humans.  Immunopharmacol Immunotoxicol 2007, 29(3):537-548.
Page 16 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3785423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3785423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15200869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15200869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17629573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7664495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7664495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16050139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8880005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8880005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8880005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15144018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15144018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15144018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8236799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12395836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12395836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18062997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16464247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15127842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15127842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15127842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17396211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17396211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15602774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15602774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15602774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15335725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15335725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16927243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16927243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=887917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6523119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15487698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15487698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17931423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17931423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1596101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1596101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10708954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10708954
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12220554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12220554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15319175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15319175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15319175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18075863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18075863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18075863


Environmental Health 2008, 7:52 http://www.ehjournal.net/content/7/1/52
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

72. Nakata H, Sakakibara A, Kanoh M, Kudo S, Watanabe H, Nagai N,
Miyazaki N, Asano Y, Tanabe S: Evaluation of mitogen-induced
responses in marine mammal and human lymphocytes by in
vitro exposure of butyltins and non-ortho coplanar PCBs.
Environ Pollut 2002, 120(2):245-253.

73. Liebler DC: Proteomic approaches to characterize protein
modifications: new tools to study the effects of environmen-
tal exposures.  Environ Health Perspect 2002, 110(Suppl 1):3-9.

74. Vendrell I, Carrascal M, Vilaro MT, Abian J, Rodriguez-Farre E, Sunol
C: Cell viability and proteomic analysis in cultured neurons
exposed to methylmercury.  Hum Exp Toxicol 2007,
26(4):263-272.

75. Nyman T, Rosengren A, Syyrakki S, Pellinen T, Rautajoki K, Lahesmaa
R: A proteome database of human primary T helpers cells.
Electrophoresis 2001, 22:4375-4382.

76. Caron M, Imam-Sghiouar N, Poirier F, Le Caer JP, Labas V, Joubert-
Caron R: Proteomic map and database of lymphoblastoid
proteins.  J Chromatogr B 2002, 771:197-209.

77. Stentz FB, Kitbchi AE: Transcriptome and proteome expression
in activated human CD4 abd CD8 T-Lymphocytes.  Biochem
Bioph Res Co 2004, 324:692-696.

78. Carrillo-Vico A, Calvo JR, Abreu P, Lardone PJ, Garci'a-Maurin SO,
Reiter RJ, Guerrero JM: Evidence of melatonin synthesis by
human lymphocytes and its physiological significance: possi-
ble role as intracrine, autocrine, and/or paracrine substance.
FASEB J 2004, 18:537-538.

79. Nakatsuru S, Oohashi J, Nozaki H, Nakada S, Imura N: Effect of
mercurials on lymphocyte functions in vitro.  Toxicology 1985,
36:297-306.

80. Shenker BJ, Berthold P, Rooney C, Vitale L, DeBolt K, Shapiro IM:
Immunotoxic effects of mercuric compounds on human lym-
phocytes and monocytes. III. Alterations in B-cell functions
and viability.  Immunopharmacol Immunotoxicol 1993, 15:87-112.

81. Shenker BJ, Guo TL, Shapiro IM: Induction of apoptosis in human
T-cells by methyl mercury: Temporal relationship between
mitochondrial dysfunction and loss of reductive reserve.  Tox-
icol Appl Pharmacol 1999, 157:23-35.

82. Shenker BJ, Pankoski L, Zekavat A, Shapiro IM: Mercury-induced
apoptosis in human lymphocytes: caspase activation is linked
to redox status.  Antioxid Redox Signal 2002, 4:379-389.

83. Byun Y, Chen F, Chang R, Trivedi M, Green KJ, Cryns VL: Caspase
cleavage of vimentin disrupts intermediate filaments and
promotes apoptosis.  Cell Death Differ 2001, 8:443-450.

84. Moisan E, Kouassi E, Girard D: Mechanisms involved in methyl-
mercury chloride (MeHgCl)-induced immunosuppression of
human neutrophil apoptosis.  Hum Exp Toxicol 2003, 22:629-637.

85. Kim KC, Chu RC, Barron GP: Mercury in tissues and lice of
Northern fur seals.  Bull Environ Contam Toxicol 1974,
11(3):281-284.
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12395836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11834459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11834459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11834459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17615107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17615107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11824605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14715696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14715696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2931861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8450183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8450183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8450183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329504
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12215206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12215206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12215206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11423904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11423904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11423904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14992324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14992324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14992324
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Blood sampling
	Mercury analysis
	Cell cultures
	Harbour seals
	Humans

	Cytokine expression
	Viability of PBMCs and functional tests
	MTS assay
	Incorporation of radioactive precursors
	Proteomics analysis
	Protein preparation
	Protein separation
	Mass spectrometry protein identification

	Data analysis

	Results
	Hg levels in the blood of free-ranging seals
	Proliferative response of controls and exposed human and seal PBMCs
	Functional tests
	Detection of housekeeping gene and cytokines
	Proteomics analysis

	Discussion
	Study of the proteome

	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

