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Abstract
Coupled physical-biological models are capable of linking the complex interactions between
environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport
of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess
and predict the impact of pathogens and HABs on human health. Given the widespread and
increasing reliance of coastal communities on aquatic systems for drinking water, seafood and
recreation, such predictions are critical for making informed resource management decisions. Here
we identify three challenges to making this connection between pathogens/HABs and human health:
predicting concentrations and toxicity; identifying the spatial and temporal scales of population and
ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs
to management strategies. We elaborate on the need to meet each of these challenges, describe
how modeling approaches can be used and discuss strategies for moving forward in addressing
these challenges.
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Introduction
Pathogens and harmful algal blooms (HABs) can be sig-
nificant threats to human health through their presence in
drinking water supplies, seafood, and coastal waters used
for recreation. Predicting their presence in aquatic envi-
ronments and quantifying the risk to human health are
major scientific challenges that require an understanding
of the biological and chemical interactions that control
growth and toxicity, as well as the pathways over which
they are transported from sources to regions of potential
human exposure. Coupled physical-biological models,
which aim to accurately represent population dynamics
and hydrodynamic transport, are effective tools for study-
ing these interactions, predicting outbreaks of toxic organ-
isms, enhancing understanding of the system and
assisting in the management of aquatic resources. Here,
we identify three scientific challenges to applying models
of biological and environmental controls of pathogen and
HAB concentrations and their subsequent impacts on
human health:

1) Predicting concentrations and toxicity of pathogens
and HABs along transport pathways between sources and
locations where they may pose a risk to human health.

2) Identifying the space and time scales at which patho-
gens and HABs interact with their environment and the
appropriate scales at which their concentrations should be
sampled or predicted in order to effectively assess risks to
human health.

3) Integrating predictions of pathogen and HAB concen-
trations and toxicity with assessments of human health
risks, economic impacts and management strategies.

All of these challenges require integration of modeling
with both field and laboratory observations over a broad
range of disciplines including aquatic biology, chemistry,
ecology, and hydrodynamics. Observations are required
to constrain parameters used in models and to validate
model predictions. Conversely, models can inform the
acquisition and analysis of observations by providing a
broader context from which to interpret necessarily lim-
ited data collection. Models are also useful in gaining a
better mechanistic understanding of the system and its
processes. An important goal is to use integrated mode-
ling and observations to test potential management strat-
egies for HABs and pathogens and assess their risk to
human health.

Discussion
Predicting the concentrations and toxicity of pathogens 
and HABs
The sources of infectious pathogens in the aquatic envi-
ronment are varied and can have both animal and human

origins. Sick individuals may shed microbes, which are
released into the environment through common external
sources such as sewer outfalls, wastewater treatment plant
overflows, leaky septic tanks, agricultural runoff and at
beaches. These pathogens can be subsequently ingested
by a healthy individual, thereby propagating the disease
transmission cycle. Factors affecting the concentration
and toxicity of pathogens include distance from the
source, predation, dilution, removal by deposition,
regrowth and mortality which can be a function of salin-
ity, temperature, UV light, and other factors. Pathogens
known to be a risk to human health include Vibrio chol-
erae, Vibrio vulnificus, Giardia lamblia, Cryptosporidium par-
vum, norovirus, hepatitis A and enterovirus, among many
others. Pathogens generally aren't measured directly, but
are approximated by indicators of fecal contamination
such as enterococci, Escherichia coli and fecal coliforms. It
is known that such indicator organisms may respond to
these factors differently than the pathogens themselves.
See Stewart et al. (in this supplement) [1] for more infor-
mation on the sources and effects of pathogens.

Toxic HAB species are indigenous to many aquatic sys-
tems, but may be dispersed through ballast water, oceanic
currents, birds and other wildlife [2,3]. While not all
marine and freshwater algal genera are capable of toxin
production, those that do may adversely impact human
health when they reach bloom concentrations, either
through direct consumption of water, inhalation of aero-
solized particles, skin irritation during recreational con-
tact or through accumulation in shellfish and/or finfish.
Factors impacting the concentration and toxicity of HABs
include nutrient concentrations, light, hydrodynamic
mixing, strain composition, life cycle transitions and pres-
ence of grazers and/or competition [4]. Erdner et al. (in
this supplement) [5] provide more detail on HABs that
impact human health.

The multitude of factors that can impact the severity of
HAB and pathogen outbreaks calls for the use of models
to aid in the prediction of potential effects on human
health. These predictions require an understanding of the
forces that affect the initial concentrations, how environ-
mental conditions impact growth and toxicity/patho-
genicity and how the concentrations of pathogens and
HABs change during transport. Forces that act at a number
of different spatial scales impact these processes. For
example, at scales on the order of the cell diameter,
growth of a planktonic species is a function of the diffu-
sion-limited supply of substrates to the cell membrane
and the physiological capability of a cell to take up and
assimilate nutrients. The mortality of a species depends in
part upon losses to predators, which are a function of the
concentrations of the predator and prey, the encounter
rate of the two populations, and the efficiency with which
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the predator harvests the prey. On a larger spatial scale,
mesoscale physical processes such as currents, eddies,
convergences and upwelling zones all can potentially
influence the distribution of HABs and pathogens [3,6,7].
Knowledge of organism abundance is not necessarily suf-
ficient because production of the harmful compounds
depends on complex intracellular processes that can cause
cellular toxicity/pathogenicity to vary by orders of magni-
tude. The genetic diversity of organisms is also an impor-
tant factor in predictive modeling [8]. In other words,
equal numbers of organisms can have very different over-
all toxicity. Both the population dynamics of the organ-
ism and its toxin/pathogen production can be modulated
in a variety of ways by environmental conditions such as
temperature, salinity and nutrient availability; all of
which can be influenced by human activities in a variety
of ways. Human activities can also complicate matters by
introducing substances into the environment that may
affect growth and toxin production, including organic and
inorganic chemicals such as polycyclic aromatic hydrocar-
bons, pesticides, herbicides, and brominated flame retard-
ants; many of the interactions and impacts of these
compounds are still relatively unknown.

Conceptual underpinnings of model formulation
Modeling approaches are a means by which to address
these varying components in connecting sources to
human exposure. There are several layers of complexity in
this process (Figure 1). In the simplest case (Figure 1A),
currents disperse these agents from source regions to areas
in which human activities can be impacted. Even this sim-
plest case is challenging because neither the sources nor
the transport pathways are typically well characterized
and can be complex within turbulent coastal systems that
have time-varying and spatially-dependent forcing. In
addition, the source cannot always be treated as persistent
in space or time, primarily because of the biological and
physical processes that regulate its expression, as
described above (Figure 1B). Although the dynamics of
the causative organisms can sometimes be effectively iso-
lated from the rest of the ecosystem, such is not always the
case (Figure 1C). The need to explicitly resolve ecosystem
dynamics is especially acute when the causative organism
constitutes a significant component of the pathogen/algae
community, as often occurs in harmful algal bloom phe-
nomena. In such circumstances, the organism can have
direct impacts on both bottom-up controls such as nutri-
ent/light availability and top-down controls via grazing.
Therefore, since the conceptual frameworks underpinning
these various approaches to pathogen and HAB problems
differ widely in their level of abstraction, the observa-
tional and modeling strategies needed to address these
issues must be tailored to each application, and its
assumptions, accordingly.

Applying modeling approaches
The range of models used in simulating the fate, transport
and concentration of HABs or pathogens is wide and
depends on data availability as well as the level of mecha-
nistic understanding. At one end of the range, empirical
models are focused on a few controlling parameters and
the dependent variable, e.g. the concentration of a HAB or
pathogen. These models rely on statistical relationships
between observed parameter (e.g. environmental condi-
tions or indicator organisms) with the pathogen or HAB
concentration to determine the reliability, sensitivity or
specificity of a given parameter for prediction [9,10].
While easily derived, these relationships are likely to be
site specific. Coupled biological/physical numerical mod-
els link a hydrodynamic model that simulates transport
and dispersion with a mathematical model describing
ecosystem dynamics and the response of the HAB species
or pathogen to environmental controls (Figure 1). These
models can be very complex and require a considerable
amount of data. For example, a pathogen fate and trans-
port model may incorporate functions to account for
microbial sources, die-off, deposition, regrowth [11,12]
and (in some cases) impacts to shellfish [13]. Models of
this type are often adaptable to different locations and
changing environmental factors driving the system and
can therefore be useful as predictive tools.

Models generally require significant amounts of data to
make accurate predictions. However, even models that are
well supported by data are subject to uncertainty because
our knowledge of ecosystem dynamics, hydrodynamic
transport and dispersion processes will always be incom-
plete. Uncertainty in model input variables such as initial
conditions, sources and environmental forcing factors,
combined with the inability of models to resolve all the
spatial and temporal scales of variation, results in uncer-
tainty in model predictions. Even once there are well-
established models, the connections between the popula-
tions of pathogens or harmful algae and prediction of
human health impacts are not straightforward.

The predictive capability of a model can be described in
terms of accuracy and specificity. Accuracy is the ability of
the model to predict the endpoint of interest whereas spe-
cificity is the ability of a model to be selective for the out-
come of interest. In practice, this quantitative assessment
can be carried out with formal validation approaches and/
or reiterative evaluation. Models are validated in several
ways. Dependence of the solution on input parameters
can be quantified by systematic variation of those param-
eters about a baseline case. Simulation studies can help in
this identification and can generate new predictions.
Direct testing of field observations and/or laboratory stud-
ies against model predictions is a way to test the predictive
capability of models and the resulting inconsistencies
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Modeling approaches for linking sources of HABs and pathogens in the oceans and Great Lakes to human healthFigure 1
Modeling approaches for linking sources of HABs and pathogens in the oceans and Great Lakes to human health.
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help to identify gaps in our understanding of the ecosys-
tem. While such comparisons are often limited due to the
necessarily smaller spatial and temporal scale of observa-
tional surveys compared to typical model domains of
interest, modeling approaches can provide significant
insights with respect to the factors that influence HAB and
pathogen concentrations in coastal ecosystems and fur-
ther develop a more mechanistic understanding of not
only if, but how these factors have an impact. The integra-
tion of field work (to identify what environmental con-
trols, hydrodynamic forcing factors and population
dynamics are associated with HAB or pathogen presence
and toxicity), controlled laboratory experiments (to deter-
mine if those associations are significant and quantify
parameters required for biological models) and modeling
(to inform future sampling, prediction and forecasting) is
the key to connecting pathogen/HAB populations to
human health impacts (Figure 2).

Modeling approaches that integrate field and laboratory
data have been used successfully to predict concentrations
of pathogens and HABs in aquatic systems, as demon-
strated in the following series of examples. The closing of
swimming beaches due to potentially high levels of path-
ogens, as assessed by indicators of fecal contamination, is

an excellent example of the need for new modeling
approaches. Under current regulations, beach closures
and advisories are issued when indicator microbe levels
exceed a specific threshold. Beach closings are costly,
inconvenient and, at times, unnecessary. Unnecessary
beach closures occur for two predominant reasons. First,
the sporadic nature of the exceedences is not compatible
with the long analysis times that most traditional moni-
toring methods require (e.g. on the order of 24 hours). For
cases where the sources of indicator bacteria are intermit-
tent (on time scales less than days), the monitoring pro-
gram is incapable of providing warnings in a time effective
manner. By the time the warning is in place, the bacterial
levels may no longer be high enough to require a beach
closure. Beach closures are a significant issue in the Great
Lakes region, where there are over 500 beaches used for
recreation. Research on one such beach along the Indiana
coast of Lake Michigan (Burns Ditch, Portage, Indiana),
has shown that water from this source contributes signifi-
cant amounts of E. coli and associated bacteria to the near
shore beach areas of southern Lake Michigan, but the cur-
rent beach monitoring program has been proven inade-
quate, particularly if samples are collected only
periodically. To protect human health among beach users
in this area researchers have developed a coupled model
that incorporates models of near-shore hydrodynamics,
hydrological input, near field mixing, pathogen loading
(through tributaries, non-point sources and resuspen-
sion), and bacterial fate and transport in order to assess
the need for beach closures in this area within time scales
consistent with the sources of indicator microbes [12].
This type of coupled model could also be applied to pro-
tect human health from the impacts of pathogens on
drinking water supplies, such as those experienced by the
city of Milwaukee in 1993 when an outbreak of Crypt-
osporidium caused illness in 400,000 residents [14]. There
were multiple factors affecting the severity of this event,
including heavy precipitation increasing pathogen load-
ing, transport of pathogens in nearshore Lake Michigan
from the wastewater outfall to the drinking water intake,
and survival rates of the pathogens in the process of trans-
port and treatment.

Another primary cause of unnecessary beach closures is
associated with the unknown relationship between health
effects and indicator microbes which come from non-
point sources. Non-point sources can include humans,
animals, and potentially regrowth within shoreline sedi-
ments [15,16]. As a result of uncertainties in the ability of
indicator microbes to track human health effects in areas
impacted by non-point sources, models should focus on
simulating pathogen sources specifically, which are con-
sidered to be a better indicator of human health effects.
Pathogens may also be present in the absence of elevated
indicator levels due to the ability of some pathogens to

This diagram illustrates the three components that are key to connecting pathogen and HAB populations to operating sys-tems that predict human health impacts: field work, labora-tory experiments and modelingFigure 2
This diagram illustrates the three components that are key to 
connecting pathogen and HAB populations to operating sys-
tems that predict human health impacts: field work, labora-
tory experiments and modeling.
Page 5 of 13
(page number not for citation purposes)



Environmental Health 2008, 7(Suppl 2):S5 http://www.ehjournal.net/content/7/S2/S5
survive treatment or otherwise persist longer than indica-
tor bacteria, or be present at low but dangerous concentra-
tions following dilution effects.

Pathogen concentrations at a beach are controlled by both
transport of pathogens to the beach and their fate once
there. For example, many studies have shown that the
indicator microbe, enterococci, can grow in the sand at
the waters edge and from there can be suspended into the
water column. To account for this in situ growth, a patho-
gen fate and transport model was coupled to a hydrody-
namic model and was parameterized to simulate
enterococci at a 1.6 km stretch of beach in Miami, Florida
[17]. This model, still under development, employs a
fixed finite element triangular grid in which the tidal oscil-
lation of the water surface successively dries and wets the
computational cells in the intra-tidal zone, simulating the
back-and-forth movement of the waters edge and the zone
of microbe re-suspension. The inactivation of enterococci
by phototoxicity is modeled as a first order decay process
with the decay coefficient dependent on solar radiation
and calibrated to experimental data. Since the site is a pro-
tected bayside beach with prevailing offshore winds from
the east, wind waves are modeled only as a microbial load
re-suspension mechanism through their stirring of the
beach sand containing microbes at the water's edge. The
wave surf circulation is very weak and is ignored. Others
have modeled beaches where the wave action is stronger
and is thus important in diluting the microbial concentra-
tions [17,18]. Pathogen sources from animal (i.e. dog and
bird) use of the beach, as well as human bather shedding
have been quantified through field experiments and dig-
ital camera monitoring of the beach provides information
on timing, location, and quantity of potential sources.
Through model experiments, expected variations in water
column microbe counts can be quantified for each of the
source functions or combinations of functions to supple-
ment the information obtained from the field monitor-
ing. To date, the model has been used to study loading
processes, however, due to sparse field observations,
actual hindcast or predictive simulations have not yet
been made.

In another example, a modeling approach has been suc-
cessfully used in predicting harmful algae concentrations.
Ciguatera is the most common agent of seafood poison-
ing in the world; it is estimated to account for 95% of the
medical costs associated with harmful algal blooms.
Humans acquire ciguatoxin by eating reef fish that have
accumulated the toxins originally produced by the epi-
phytic dinoflagellate Gambierdiscus toxicus, and biomagni-
fied and biotransformed via the marine food web. The
factors controlling G. toxicus abundance and/or ciguatera
outbreaks are poorly understood. In order to better pre-
dict variations in G. toxicus abundance due to variations in

environmental control parameters, a model was devel-
oped using smoothed time-series abundance data from
regular sampling along the coast of Hawai'i and literature-
based kinetic constants for G. toxicus populations from
around the world (M. Parsons, pers. comm.). The Gam-
bierdiscus time-series generally parallels that of ciguatera
incidents in Hawai'i. Application of such constants to the
simulation model is intended to improve the understand-
ing of the dynamics of in situ toxin production leading to
ciguatera poisoning.

In New England, the most serious HAB issue is paralytic
shellfish poisoning (PSP), a potentially fatal illness that
occurs when humans eat shellfish that have accumulated
saxitoxins from dinoflagellates in the genus Alexandrium
[19]. Linkage between the population dynamics of Alexan-
drium and the hydrodynamic environment arises from
three basic sources: ambient water properties, spatial dis-
tributions of populations as influenced by ocean currents
and the swimming ability of Alexandrium. Coupled physi-
cal-biological models offer a framework for diagnosis of
these manifold contributions to variability in Alexandrium
populations in the Gulf of Maine (GOM). Extensive com-
parisons between simulated and observed physical and
biological fields suggest that the model is capable of cap-
turing many aspects of the temporal evolution and spatial
distribution of a particularly severe bloom that occurred
in 2005 [20]. Hindcast sensitivity experiments based on
the 2005 data distinguished the roles of three major fac-
tors hypothesized to contribute to the bloom: 1) the high
abundance of newly deposited A. fundyense cysts in west-
ern GOM sediments; 2) strong northeaster storms with
prevailing downwelling-favorable winds; and 3) a large
amount of fresh water entering the GOM due to abundant
rainfall and heavy snowmelt. Newly deposited cysts in the
western GOM appear to have been the primary causative
factor of the 2005 bloom [21]. Wind forcing was an
important regulator, as episodic bursts of northeast winds
caused onshore advection of offshore populations. These
downwelling-favorable winds also accelerated the along-
shore flow, and anomalously high river runoff in 2005
resulted in stronger buoyant plumes/currents, both of
which resulted in transport of high cell concentrations
into Massachusetts Bay. This work has shown that cou-
pled hydrodynamic/population dynamics models of this
type may be able to forecast large scale seasonal character-
istics of the bloom.

Space and time scales of ecosystem dynamics and 
environmental monitoring
The abundance of organisms such as harmful algae, path-
ogens and microbial indicators are heterogeneous
because they are influenced by physical, chemical, and
biological processes that vary across a wide range of spa-
tial and temporal scales in the aquatic environment. This
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variability, which is inherent in the distribution of organ-
isms, presents challenges to investigators who seek to
model abundance and growth in relationship to environ-
mental conditions and sample appropriately. Natural spa-
tial and temporal variability provides a heterogeneous
background that makes it difficult to understand and
quantify ecosystem responses to specific stressors. For
example, natural changes in water quality that occur at
different time scales (e.g. seasonally or tidally) may be so
large as to mask changes in water quality that occur as a
result of human activities [22]. Random or episodic events
that are not accounted for in the sampling approach may
introduce additional variation or noise leading to inap-
propriate management decisions and actions [23]. This
heterogeneity may reflect simple environmental gradients
(e.g., distance from pollution sources, salinity change,
and sediment type differences) or more complex proc-
esses such as seasonal successional changes or complex
ecological interactions. Human influences and linkages to
the aquatic environment also vary in space and time and
can interact with natural processes to create intricate and
perplexing patterns. Failure to understand interactions
between natural processes and change due to human
activities frequently makes it difficult to link specific
sources of HABs and pathogens to changes in ecosystem
and public health.

Spatial and temporal scales expressed in Stommel diagrams
The spatial and temporal dimensions of this variability
can be expressed as schematic plots that are often referred
to as "Stommel" diagrams. Here we illustrate the relevant
space and time scales for some of the aquatic organisms
that affect human health (Figure 3). The time scales range
from days for beach closures, weeks to months for HABs
[24] and years to decades for cholera outbreaks. The cor-
responding spatial scales at which aquatic organisms
affect human populations increase proportionately from
hundreds of meters at beaches [25] to up to 1000 km for
cholera [6].

Beach closures associated with high counts of fecal colif-
orms occur at 'event' scales of days with corresponding
spatial scales on the order of meters to hundreds of
meters. The physical processes that transport pathogens
from source regions, such as a watershed or sewage out-
fall, to a beach include runoff following rain events, tidal
currents and buoyant plumes [26,27]. The variability of
abundance in source waters, such as rivers in urban envi-
ronments, can vary from <100 to >1000 organisms per
100 ml, as most probable units, within distances of a few
meters [25]. Average monthly counts may also vary by
more than an order of magnitude at individual stream sta-
tions. If this variability is characteristic of riverine water
discharging into the coastal environment, sampling strat-
egies to monitor conditions for beach closures must con-

sider short-term fluctuations in source waters as well as
runoff events.

Time scales on the order of weeks to months are character-
istic of the duration of HABs. In North American coastal
waters, different species of dinoflagellates frequently
develop bloom conditions that last for several months in
the eastern Gulf of Mexico, Gulf of Maine and along the
Pacific coast [7,28]. These blooms extend over distances of
tens to hundreds of km at the oceans' surface, while other
species, such as Karenia mikimotoi and Dinophysis acumi-
nata, can exist as layers in the water column with a thick-
nesses ranging from tens of centimeters to meters [29].
The development of these 'thin layers' complicates the
sampling strategy and requires a means of continuously
mapping the vertical distribution of organisms with
depth.

Horizontal distributions of algal cells within a bloom are
also spatially heterogeneous. For example, once a bloom
of the toxic dinoflagellate Alexandrium fundyense initially
develops from benthic cysts in the western Gulf of Maine,
the surface distribution is largely regulated by population
growth and the transport of cells by surface currents as
modified by local winds [7,30]. Regions of high cell den-
sity in surface waters of the GOM can exhibit a bifurcated
pattern that parallels the flow of surface currents, which
impacts, which shellfish beds will be, exposed to the PSP
toxins that these cells produce. The patchiness in surface
distributions of the toxic dinoflagellate Karenia brevis is
evidenced by the fact that advisories must be issued daily
along the west Florida coast to warn individuals with res-
piratory problems who might inhale the aerosolized tox-
ins [31,32]. High variability in cell concentration can
result in beaches separated by only a few kilometers differ-
ing markedly in their suitability for bathers.

The variability in environmental conditions and processes
that influence the population dynamics of the target path-
ogen or HAB has also been demonstrated through a net-
work of automated observing systems in the Hood Canal
sub-basin of Puget Sound, Washington. The Oceanic
Remote Chemical-optical Analyzer (ORCA) is a moored
buoy that telemeters hourly profiles of oceanographic and
atmospheric properties in near-real time [33]. The high
frequency of observations allows for patterns of environ-
mental variability occurring on hourly (e.g. tides) to inter-
annual (e.g. El Niño/Southern Oscillation) timescales to
be resolved and has revealed the high variation of biolog-
ical variables on various temporal/spatial scales in Puget
Sound [34], further demonstrating that the development
of algae blooms cannot always be resolved by monthly
sampling.
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The periodicity in cholera outbreaks in coastal communi-
ties exists at temporal scales of years to decades. The path-
ogenic bacteria Vibrio cholerae is widespread in coastal
waters and exists in rivers as well as the open ocean. How-
ever, the disease is endemic only in subtropical and trop-
ical latitudes with peaks in reported cases occurring in
spring and fall in Asia around the Bay of Bengal, and more
recently coastal South America. There is a demonstrable
association of cholera outbreaks with El Niño conditions
[6], leading to the development of a hypothesis that cli-
mate-driven events enhance the emergence of virulent
strains of Vibrio cholera with transmission to humans
through marine invertebrates.

Linking observations with models
A fundamental problem for investigators is that a mis-
match often exists between the scale at which organisms
are sampled and the scales at which their growth and dis-
tribution are regulated by environmental conditions.
Accurate detection of pathogens can be challenging due to
their presence in low concentrations and their patchiness
in distribution. The paucity of field monitoring data can

be mitigated through the use of models to describe the
expected spatial and temporal fields under given source
concentrations and environmental conditions. Models
can also be used to guide sampling effort and are helpful
in understanding whether or not the results obtained
from a particular sample collected at a particular point in
time and space are representative. For example, the typical
sample size for routine water quality monitoring purposes
is 100 ml, a size that is approximately 7 or 8 orders of
magnitude less than the size of the water body to be eval-
uated for safety. Given the results from a particular sam-
ple, the model could thus serve in hindsight to provide
information concerning the range of results that could
have been predicted if the sample were collected at a set
time or distance removed from the original sample. Dur-
ing an epidemiologic study, models can be designed to
determine where the expected range of pathogen or toxin
levels would be found to best represent conditions for
human health exposures.

For beaches with non-point sources of pathogens, the
timely warning of health hazards is a challenging objec-

Examples of the characteristic temporal and spatial scales utilized in sampling marine organisms that affect human healthFigure 3
Examples of the characteristic temporal and spatial scales utilized in sampling aquatic organisms that affect human health. The 
influence of nutrients and chemical contaminants extend across all scales in space and time. This schematic is a simplified rep-
resentation of spatial and temporal scales of interest, as illustrated by the distinct scales for Harmful Algal Blooms in thin layers 
(HABTL) and in extended surface blooms (HABSURFACE).
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tive that remains elusive in part because of the disparity of
scales of monitoring and the scales of concentration vari-
ation in the environment. At beaches with no known
point source of pathogens, regulatory monitoring typi-
cally consists of infrequent samples, once a week at one
location, for a large transiently shifting volume of beach
water stretching thousands of meters along the beach and
30 m offshore. In contrast to beaches exposed to known
(relatively remote) point sources, the loading at non-
point source beaches may originate locally at the shore-
line and/or result from discrete events, such as bather
shedding [16] and the impacts to beaches and swimming
areas may be influenced by hydrodynamic factors. Again,
here time scales are of importance specifically with respect
to factors that influence the magnitude and direction of
ocean currents and density stratification of the ambient
water [35]. A coupled nearfield and farfield model of the
Mamala Bay (Oahu, Hawai'i) outfall [36,37] showed
extreme variability of the plume behavior due to changes
in currents and density stratification with nearfield dilu-
tion from one hundred to several thousands. Long-term
simulations predicted that flushing, horizontal diffusion,
and decay would result in very high dilutions, preventing
any significant buildup of microbial contaminants. Simu-
lation results showed that outfall impacts to nearby
beaches were considered to be very small, with other non
sewage sources such as flows from canals and storm water
discharges as the primary contributor to higher levels of
bacteria.

The shallow water and moving boundary inherent to
beaches are not handled well by present models that use
fixed computational grids [38]. These models are also
mostly designed to simulate water column constituents as
part of the continuum. The continuum approach is ade-
quate when there are sufficient particles spread out in a
computational cell to allow for characterization of the
mass present with a concentration value for that cell.
However, in reality indicator microbes and pathogens
may act more as separate particles possibly occurring in
small patches due to the discrete character of the sources
in time and/or space, so other ways of characterizing their
distribution are needed. Presently one way of overcoming
this is to use Lagrangian tracking of individual particles or
patches. However, for large numbers of particles the com-
putational burden becomes excessive and the physical
processes down to the scales that need to be resolved may
still be inadequately represented. Ensemble forecasts, per-
haps similar to techniques used in weather forecasting,
may also be used to address such sparse or patchy distri-
butions of microbes. The interaction of microbes or path-
ogens with solid particles that are suspended into the
water column or settle to the bottom at different times
(for example, over a tidal cycle) and locations could be
important but has received little attention. In some cir-

cumstances, coupling of the water column hydrodynamic
and ecosystem models to a sediment model may be essen-
tial to accurately represent the relevant interactions.

Field data on the transport of blooms can advantageously
be incorporated into models. Off the coast of Washington
State, drifters have been employed to track the transport of
blooms of Pseudo-nitzschia to coastal razor clamming
beaches. The diatom Pseudo-nitzschia produces the toxin
domoic acid, which accumulates in bivalves and may
cause human consumers a potentially life threatening ill-
ness called amnesic shellfish poisoning [39]. Drifters were
deployed in the Juan de Fuca eddy, a highly retentive oce-
anographic feature and initiation site for blooms, and
tracked via satellite. Drifters that escaped the eddy were
advected southward in the coastal jet during periods of
upwelling favorable winds. In order for blooms to impact
coastal beaches, research has shown that a storm with
downwelling favorable winds is necessary to drive
onshore transport [3,40]. Drifter locations are accessible
in real-time by managers to assist with timely decisions
about the safety of shellfish harvest at coastal beaches.

The use of data assimilation, a technique by which model
simulations are repeatedly adjusted during a simulation
with observations at discrete locations and times, has in
some cases significantly improved model skill. Formal
methods of data assimilation offer a variety of means to
constrain coupled physical-biological models with obser-
vations [41]. The last two decades have seen a dramatic
increase in the types of data that are input into such mod-
els, and the development of robust and varied approaches
for assimilation [e.g. [42-45]]. For instance, data assimila-
tion can reduce model-data misfit by recovering optimal
parameter sets using multiple types of data [46,47]. Per-
haps even more importantly, these data assimilation anal-
yses can demonstrate whether or not a given model
structure is consistent with a specific set of observations.
When model and data are shown to be consistent, the spe-
cific mechanisms underlying observed patterns in simu-
lated distributions can be identified.

Growing needs for real-time information concerning
ocean processes relevant to human health have brought
the issues of model prediction and forecasting to the fore-
front. However, it is clear that much more work needs to
be performed before this becomes a realistic and achieva-
ble goal. One of the first applications of data assimilation
within marine and atmospheric science was in atmos-
pheric weather modeling and forecasting and the tech-
nique is particularly helpful in complex systems where
continuous data records are available at one or multiple
locations. As a similar abundance of high resolution bio-
logical and chemical data become available for the ocean
and coastal waters, by means of satellite remote sensing
Page 9 of 13
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and ocean observing systems, these techniques can also be
advantageously employed in future pathogen and HAB
modeling. Until this time, and until a better understand-
ing of the dynamics of marine systems is attained, data
assimilation in coupled physical-biological models will
be likely to be used more for model improvement and
parameter estimation than for operational prediction. A
necessary precursor to the latter is the quantitative dem-
onstration of forecast skill in specific applications [48].

Models do not solve problems of scale mismatching,
rather the selection and use of a model (for example
choice of grid resolution, or choice of algorithms) implic-
itly specify the scales that will be represented in solutions.
By validating model results against observations, issues of
a scale mismatch will appear as inability (or poor ability)
to properly describe certain observed features. Typically, it
is the small features that are poorly represented or absent
in models because of the need to limit the smallest grid
size based on computational efficiency. Modeling
approaches can be used to evaluate the most appropriate
scale over which to sample and predict pathogen and HAB
concentrations based on their variability in time and
space. In particular, observing system simulation experi-
ments (OSSEs) offer a means for quantitative evaluation
of sampling design. This technique has its origins in
dynamic meteorology [49] and is recognized as an impor-
tant tool for the development of oceanographic sampling
systems [50-53]. The approach begins with the construc-
tion of a simulation that is characteristic of the natural sys-
tem. The model run serves as a space/time continuous
representation of reality, which is then subsampled in a
specified fashion to produce a simulated data set. The sim-
ulated data are then fed into an analysis scheme in which
they are synthesized into a reconstruction of reality. Com-
parison of the reconstructed field with the "truth" as
defined by the original simulation thus provides a quanti-
tative evaluation of that particular sampling strategy and
the associated analysis scheme. Of course there is an
important caveat to such an evaluation: the OSSEs are
based on simulations that are imperfect representations of
the natural system. Thus, care must be taken to restrict the
scope of the OSSEs to aspects of the model that are realis-
tic. The key to successful modeling is to critically examine
model results against observations and to make necessary
modifications in order to achieve a proper match of scales
between model simulations and dominant prototype
processes.

Connecting HABs and pathogens to human health risks 
and resource management
In order to connect the understanding of the dynamics of
HABs and pathogen populations and the ecosystem
within which they live to the effects on human health, it
is probably most useful to work backwards along the

pathway indicated in Figure 1. The rationale is that work-
ing backwards from human health effects ensures that the
modeling process is focused on the human health end-
point. Following this logic, the first step in the modeling
process is to relate exposure to human health conse-
quences. This falls within the realm of epidemiology. Epi-
demiological models are typically probabilistic, that is, a
specified degree of exposure is associated with a certain
probability of some human health endpoint [54]. Death
is one endpoint, but non-lethal effects are also of great
concern. Thus a specified degree of exposure may be asso-
ciated with a variety of endpoints, each with its associated
probability. One complicating factor is the duration of
exposure. Chronic exposure will generally produce
adverse health effects at substantially lower doses than
acute exposure.

Simplistically, what is needed for an epidemiological
model is dose and response information, but this is sel-
dom available or directly obtainable if the endpoint is a
human health effect. The mechanism of exposure often,
but not always, involves ingestion. If the mechanism of
exposure involves oral ingestion of water, the model will
be probabilistic for recreational exposure, since not all
persons who go to the beach swallow the same amount of
water. If the mechanism of exposure involves entry
through cuts and abrasions, the model will require infor-
mation on the percentage of at-risk bathers and their
degree of susceptibility to infection. In some cases the
mechanism of exposure involves inhalation, in which
case the degree of exposure depends on the distribution of
people downwind of the source. In the case of fish and
shellfish consumption, the input to the exposure model
will require information on the concentration of the toxin
in fish and shellfish consumed by the at risk population.
Assuming that the food chain is the pathway by which the
toxin finds its way into fish and shellfish consumed by
humans, input to this model will require information on
the concentration of toxin in the microbes in question
and the concentration factor between the microbes and
the relevant fish and shellfish. This sort of information
may come from controlled experiments with captive ani-
mals or from sampling of natural populations. Due to
time lags between the production of toxin by microbes
and the appearance of those toxins or their metabolites in
edible fish and shellfish, developing a realistic concentra-
tion model is a difficult task. The problem will be con-
founded in the case of fish, which are motile, and hence
may be sampled at locations distant from the original
source of toxin production.

Applying modeling approaches
Models are useful for management purposes for two pri-
mary reasons. First, models provide managers with the
ability to assess the impacts of different sources on HABs
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and pathogens within receiving water bodies. Managers
can use models to evaluate the impact of suspected
sources by simply removing those sources from the model
[55]. Such a concept is manifested within the regulatory
framework by the establishment of Total Maximum Daily
Loads (TMDL) for a particular watershed. A peculiar man-
agement policy that confounds the inclusion of sources
and exposure in a management model (Figure 1D) is that
exposure is typically the purview of federal and state enti-
ties, whereas regulatory actions concerning sources (such
as land use practices) are handled at the county level. Sec-
ond, models are valuable tools for management purposes
because they can be used in a predictive forecasting mode,
for beach advisories or toxic algal bloom development.
Integrated observation and modeling systems are capable
of accomplishing what monitoring alone could never
accomplish, even in the ideal scenario of real-time meas-
urements, which is warning the public ahead of time
when health risks are present. Routine sampling and anal-
ysis should continue, nevertheless, as such data should be
used to continuously validate and verify the model.

Beach closures due to unsafe levels of domoic acid in
shellfish tissues from the harmful algal bloom Pseudo-
nitzschia species are relatively recent phenomena in Puget
Sound (WA), with the first closure documented in 2003
[56]. Subsequent closures were documented in 2005 [57],
suggesting that domoic acid may continue to threaten
shellfish harvest areas in the future. Grazing rates of 13
common shellfish species on Pseudo-nitzschia and detailed
information on beach profiles and species assemblages in
northern Hood Canal, Puget Sound, are being incorpo-
rated into an advection-diffusion model to determine the
likelihood of acute contamination of the nearshore shell-
fish community and the potential risk to human harvest-
ers and consumers. Such values are especially important
for accurate prediction of contaminated shellfish as there
can be dramatic differences in toxin retention between
shellfish types (e.g. blue mussels retain domoic acid for
days versus razor clams retain the toxin for months.)

Another way in which modeling has been used to guide
management decisions related to oceans and human
health is exhibited in the use of tidal creek watersheds as
important habitats for identifying and obtaining early
warning of environmental and public health issues asso-
ciated with rapid southeastern coastal development. In
the southeastern U.S., tidal creek watersheds are among
the most rapidly developing regions in the nation. Tidal
creeks are the primary interface between the landscape
and estuaries where freshwater from the land mixes with
saline water, resulting in dynamic environments that are
renowned for their ecological complexity, biological pro-
ductivity and seafood production [23,58]. As the first
zone of impact for non-point source pollution runoff, the

potential for the microbial and chemical contamination
in tidal creek habitats is great. Based on the data collected
by Holland et al. [23], a conceptual source-receptor model
was developed. This model provides an overview of the
linkages between the stressors associated with non-point
source runoff from coastal development and the ecosys-
tem and societal responses that result, including shellfish
bed closures from pathogen contamination and the flood-
ing vulnerability of adjacent uplands during storm events.
The elements of the model have been validated for South
Carolina, North Carolina, and Georgia, and have proven
useful for communicating results to general and technical
audiences.

Conclusion
In this merging of science and society, modeling
approaches can be of great assistance in meeting the chal-
lenges of identifying and predicting the impacts of HABs
and pathogens on human health. Making the link from
sources to human health requires the ability to predict
concentrations and toxicity/pathogenicity, identify the
appropriate space and time scales over which to measure
and model, and integrate model predictions with assess-
ment of human health risk and management strategies.
Key to the effort to connect sources of HABs and patho-
gens to impacts on human health is the ability to integrate
field and laboratory studies into modeling efforts: to use
empirical observations from the field and mechanistic
understanding from the laboratory to provide input to the
models and also use modeling output to guide sampling
efforts and point out the gaps in the mechanistic under-
standing of the system. Opportunities to share resources
in terms of field data, important physical and ecological
processes and to synthesize different modeling
approaches will significantly advance our understanding
of these systems and improve our predictive capabilities.
Collaboration between researchers from multiple disci-
plines as well as engagement between empiricists, model-
ers and stakeholders will be necessary to develop and
apply modeling approaches in a way that truly can con-
nect sources of HABs and pathogens to human health in a
meaningful way. There have been many successes in using
modeling approaches to inform management decisions to
protect human health and interdisciplinary and contin-
ued development of collaborative research is essential to
continue to address the challenges that remain.
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