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Abstract
Mass populations of toxin-producing cyanobacteria commonly develop in fresh-, brackish- and
marine waters and effective strategies for monitoring and managing cyanobacterial health risks
are required to safeguard animal and human health. A multi-interdisciplinary study, including two
UK freshwaters with a history of toxic cyanobacterial blooms, was undertaken to explore
different approaches for the identification, monitoring and management of potentially-toxic
cyanobacteria and their associated risks. The results demonstrate that (i) cyanobacterial bloom
occurrence can be predicted at a local- and national-scale using process-based and statistical
models; (ii) cyanobacterial concentration and distribution in waterbodies can be monitored using
remote sensing, but minimum detection limits need to be evaluated; (iii) cyanotoxins may be
transferred to spray-irrigated root crops; and (iv) attitudes and perceptions towards risks
influence the public's preferences and willingness-to-pay for cyanobacterial health risk reductions
in recreational waters.
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Background
Cyanobacteria pose short- and long-term risks to human
health when growing as mass populations (blooms,
scums, biofilms) because they can produce several potent
toxins [1,2]. These so-called cyanotoxins include neuro-
toxic, hepatotoxic, genotoxic, inflammatory and cytotoxic
agents. Microcystins are among the most potent and com-
monly encountered [1]. These toxins constitute one of the
highest risk categories of waterborne toxic biological sub-
stances, as shown by: (i) the annual occurrence of toxic
cyanobacterial populations in water bodies used for
drinking, recreation, stock-watering, fisheries and crop
irrigation; (ii) episodes of illness and mortality attributed
solely or partly to cyanotoxins; and (iii) the identification
by national and international bodies of a need for
improved risk management to protect water resources,
water-based economies and human health [3-6]. Mass
populations of toxic cyanobacteria are a global phenome-
non and the recent recognition that incidences of blooms
may increase significantly under future climate change
serves to reinforce further the seriousness of the potential
risks to human health [7]. Yet, strategies for monitoring
and managing cyanobacteria blooms tend to be reaction-
ary and we currently lack a proactive early warning capa-
bility.

Here we propose that a multi-interdisciplinary approach
incorporating the natural and social sciences is essential if
we are to protect adequately animal and human health
from the risks posed by mass populations of toxic cyano-
bacteria. This paper summarises the results of a multi-
interdisciplinary study, using a tiered risk assessment
strategy to: (i) develop statistical and process-based mod-
els to predict the occurrence of toxin-producing cyanobac-
teria in waterbodies; (ii) evaluate techniques for the
detection and identification of cyanobacterial cells and
toxins in field samples; (iii) develop remote sensing as a
tool for bloom early-warning monitoring; (iv) evaluate
the potential for cyanotoxin transfer to spray-irrigated
root crops; and (v) undertake a socio-economic study of
public awareness and perceptions of the health risks asso-
ciated with mass populations of toxic cyanobacteria and
their preferences and WTP for risk reductions.

Methods
National and local-scale models for cyanobacterial risk 
assessment
Knowledge of which lakes are susceptible to the develop-
ment of large populations of potentially-toxic cyanobacte-
ria can be used to inform national-scale assessments of
risks to public health. Statistical approaches have been
previously used to model the response of phytoplankton
communities to nutrient enrichment and reduction [8,9].
However, in this study, a statistical model was developed
to specifically predict the occurrence of toxic cyanobacte-

ria genera in UK lakes. The dataset was comprised of 262
phytoplankton samples drawn from observations at 134
lakes. General additive models for predicting the pres-
ence/absence of toxic cyanobacteria or their abundance
(% relative abundance or biovolume) were developed
from the knowledge of widely-available lake parameters
(altitude, mean depth, alkalinity, colour, retention time
and TP concentration) [10].

The process-based PROTECH model was used to examine
the local-scale impacts of climate and land-use change on
the occurrence of potential toxin-producing cyanobacteria
in two water bodies: Esthwaite Water and Loch Leven
(UK). Model scenarios considered the effects of different
temperature, nutrient-loading and flushing regimes on
the seasonal abundance of toxic cyanobacterial genera.
Further details of the PROTECH modelling can be found
in [11,12].

Early-warning monitoring using airborne remote sensing
The retrieval of Chl a concentrations from remotely
sensed data has been widely used to monitor the develop-
ment of phytoplankton blooms in inland, coastal and
ocean waters. However, this approach does not allow the
biomass of cyanobacteria to be determined independ-
ently from that of the total phytoplankton standing crop.
It has been recently shown that algorithms for the retrieval
of the cyanobacterial biomarker pigment C-PC can be
used to determine the abundance of cyanobacteria in
lakes [13-17]. A comprehensive review of progress in this
field can be found in [18].

In this study, CASI and AISA Eagle and Hawk data were
collected over Esthwaite Water on 26 April 2007 and Loch
Leven on 13 April and 22 August 2007. CASI was operated
in Spatial Mode using the band configuration detailed in
[16]. AISA Eagle and Hawk are tandem hyperspectral
instruments with 244 and 240 contiguous bands distrib-
uted across the 400-970 nm and 1000-2400 nm ranges
respectively. The airborne data were atmospherically cor-
rected to Rrs using the FLAASH model. The Hawk data
were used for aerosol and water vapour retrieval. Algo-
rithms for the retrieval of Chl a and C-PC were then
derived semi-empirically by regressing near-infrared-to-
red band-ratios against measured pigment concentrations
and comparisons were made to measured cell densities
and toxin concentrations.

Microcystin detection
Cyanobacterial cell counts and microcystin analyses were
used to evaluate the potential risks to human health in
Esthwaite Water and Loch Leven. Cells counts were under-
taken according to standard procedures using an inverted-
microscope. MC concentrations in a cyanobacterial cell-
containing particulate fraction and as dissolved toxins in
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the water were determined by PDA-HPLC and immu-
noassay [19].

Toxin transfer to spray-irrigated crops
The potential for toxin transfer to spray irrigated crops
[20] was evaluated through a greenhouse experiment.
Replicate potato plants were grown with spray-irrigation
using water spiked with purified MC-LR at the following
concentrations: 0, 1.26, 12.6, 126 μg L-1. Plant leaves were
harvested at intervals and the entire plant was then
destructively harvested at maturity. Samples of roots,
tubers, shoots and leaves and soil were freeze-dried and
subsequently toxin concentrations were measured in the
plant tissues and soil using ELISA with verification by
PDA-HPLC.

Risk perception and CV of cyanobacterial health risks
Non-use values are important components of the eco-
nomic benefits of water quality improvements [21,22].
Therefore, a CV survey including statements about percep-
tions of risk of local residents and anglers in four small
towns bordering Loch Leven was undertaken to determine
their WTP for reductions in the risks to human health
posed by blooms of toxin-producing cyanobacteria.

Results and discussion
National and local-scale models for risk assessment
The best model for national-scale risk assessment was
developed for log total cyanobacterial biovolume (R2

adj
22.3%); both log retention time and log TP concentration
showed positive linear relationships with the response,
which were borderline significant, with coefficients
(standard errors) of 0.590 (0.313) and 0.865 (0.455)
respectively. Significant humped relationships were
apparent with log colour and log alkalinity (see Figure 1).
The models show some predictive ability, but further
modelling at an individual lake level would seem neces-
sary. Nevertheless, the results suggest that such models
could be applied to targeting lake monitoring and man-
agement more efficiently at those lakes at highest risk of
breaching WHO guidance levels [see 3].

PROTECH modelling demonstrated that the cyanobacte-
ria in Loch Leven showed great sensitivity to changes in
nutrient supply, particularly that of nitrogen which, when
reduced, increased the likelihood of blooms (Figure 2). It
is likely that this is, in part, because some cyanobacterial
species can fix atmospheric nitrogen and thus continue to
grow in conditions that would be unfavourable to other
species. Water temperature increases had little effect and
the lake seemed to be heavily controlled by nutrient
resource supply [12]. In contrast, the modelling of
Esthwaite Water showed that cyanobacterial bloom for

GAM for predicting the biovolume of toxic cyanobacteria in UK lakesFigure 1
GAM for predicting the biovolume of toxic cyanobacteria in UK lakes. The response of log cyanobacterial biovolume 
to log alkalinity and log colour respectively with dashed lines to indicate ±2 standard errors, edf indicates the estimated 
degrees of freedom used to fit each variable.
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-mation was enhanced by increasing temperature and
decreasing flow (flushing) (Figure 3). However, the specif-
ics of this response were again influenced by nutrient sup-
ply and nitrogen availability [11].

Remote sensing and microcystin analysis
The remote sensing based algorithms demonstrated very
strong relationships with the measured pigment concen-
trations (Chl a: R2 = 0.74; C-PC: R2 = 0.87). Figure 4 shows
relationships between the near-infrared-to-red band-
ratios and the measured pigment concentrations along-
side a CASI image of C-PC concentrations in Loch Leven
on 22 August 2007. The algorithms were robust when val-
idated against independent datasets. However, for early-
warning purposes, further work is required to determine
the minimum detection limits of Chl a and C-PC and
their dependency on the optical properties of inland
waters as it is known that concentrations of other opti-
cally-active substances (e.g. mineral particles, organic
detritus and coloured dissolved organic matter) can affect
the accuracy of pigment retrieval.

Microcystins were detected in water samples on all occa-
sions during the airborne sorties, with total MC concen-
trations (particulate plus soluble) ranging from <1 to >30
μg L-1. High correlations between total and particulate MC
concentrations versus C-PC were obtained (r = 0.952 and
0.945 respectively), whereas poor agreement occurred
between soluble MC concentrations and C-PC (r = 0.459).
The results demonstrate that remote sensing has potential

Summer maximum cyanobacterial abundance in Esthwaite WaterFigure 3
Summer maximum cyanobacterial abundance in 
Esthwaite Water. The response of summer maximum per-
centage cyanobacterial abundance to changing water temper-
ature (°C) and flushing rate in Esthwaite Water (adapted 
from [11]).

Mean annual Anabaena abundance in Loch LevenFigure 2
Mean annual Anabaena abundance in Loch Leven. The response of Anabaena (chl a mg m-3) to changes in nutrient load 
and temperature in Loch Leven: (a) nitrate and SRP (b) SRP. (Reproduced from [12]).
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as a tool for monitoring blooms of cyanobacteria in
inland water bodies, including those containing particu-
late MCs at concentrations below and exceeding health
guidelines [3] and for aiding risk assessment activities
[17].

Microcystin transfer to spray-irrigated crops
Exposure trials have been performed on a range of grow-
ing food crop plants and sterile potato shoots using aque-
ous solutions of MC, including via aerial spraying and
root sprinkling [23-25], with multiple adverse outcomes.
These include leaf necrosis [23,24] and inhibition of seed-
ling growth [24] and whole-leaf photosynthesis [23]. MCs
have been detected in exposed plant tissues in previous
studies by ELISA [24,25]. In agreement, we also measured
low concentrations of MC (max. 1 ng MC g dry wt-1 plant
tissue) by ELISA in potato leaves, roots and tubers in the
present trials, but only when potato plants were sprayed

with the highest MC concentration (126 μg l -1). Notably,
no confirmatory identification of MC in the exposed
potato tissues was achieved using PDA-HPLC. Since ELI-
SAs do not distinguish between authentic MC and enzym-
ically-converted MC-detoxication products [26], the
question of whether sprayed edible crop plants, including
potatoes, may contain non-metabolised, toxicologically-
available MC requires further research.

Risk perception and CV of cyanobacterial health risks
Three hundred and seventy responses to the risk percep-
tion and CV questionnaire were received. Fifty one per-
cent were from female respondents. The mean age of
respondents was 52 years and the mean combined house-
hold income was £50 974 per annum. Thirty four percent
of the respondents were unemployed or retried and just
over 70% of the sample had received some form of higher
education. The results showed that the majority of

Scatter plots and concentrations of C-PC in Loch LevenFigure 4
Scatter plots and concentrations of C-PC in Loch Leven. Figures showing (a) the relationship between Rrs(710):Rrs(670) 
and the log concentration of Chl a; (b) the relationship between Rrs(710):Rrs(620) and the log concentration of C-PC; and (c) 
the concentration of C-PC in Loch Leven on 22 August 2007 as retrieved from airborne CASI data using the semi-empirical 
algorithm (the inset figure shows the presence of a thick cyanobacterial scum on the windward shoreline of Castle Island).
Page 5 of 8
(page number not for citation purposes)



Environmental Health 2009, 8(Suppl 1):S11 http://www.ehjournal.net/content/8/S1/S11
respondents (66%) believed that there are risks associated
with cyanobacterial blooms and 43% did not feel com-
fortable about these risks. Interestingly, 71% said they
were not aware of any specific adverse health effects aris-
ing from contact with toxic cyanobacteria, although 44%
and 38%, respectively, agreed that there was a low or
moderate risk to their own health. The results suggest that
the public interviewed has some knowledge about health
risks from cyanobacteria but there are inconsistencies in
how these risks are evaluated.

The majority of respondents rated the health risk posed by
toxic cyanobacteria at Loch Leven as low to moderate.
However, more than 50% of the sample were willing to
pay additional local taxes for measures to reduce these
risks by reducing nutrient inputs to Loch Leven (mean =
£16.60/household/year; standard error = £1.00/house-
hold/year), with higher values being associated with

larger risk reductions in terms of the number of days per
year when cyanobacteria present risks to humans (Figure
5). Important determinants of variations in WTP were
extent of use of the loch, employment, household income
and some risk attitude measures.

Conclusion
Mass populations of toxic cyanobacteria present signifi-
cant environmental and human health hazards. In this
study we demonstrate that it is possible to model water
bodies at risk of toxic blooms at a national scale: an
approach that could be used to develop a proactive mon-
itoring strategy. PROTECH modelling of two study lakes
demonstrated the importance of nutrients to cyanobacte-
ria abundance, but the responses to climate change appear
to be more complex. We have shown that remote sensing
has the potential to provide timely data for risk assess-
ment activities, but there is a need for further work on the
optimisation of algorithms and the assessment of their
minimum detection limits. The use of contaminated
water for crop irrigation has been shown to be a potential
route for toxin transfer to crop plants. However, our
results for potatoes remain inconclusive and further work
is needed to determine whether edible plants may contain
toxicologically-available MCs. The results from the risk
perception and CV study indicated that the general public
has a limited knowledge of the health risks associated
with cyanobacteria, but their perception of the risks deter-
mines their preferences and WTP for risk management
activities.

List of abbreviations used
CASI: compact airborne spectrographic imager; Chl a:
chlorophyll a; C-PC: cyanobacterial phycocyanin; CV:
contingent valuation; DGGE: denaturing gradient gel elec-
trophoresis; EDF: estimated degrees of freedom; ELISA:
enzyme-linked immunosorbant assay; GAM: generalised
additive model; HPLC: high performance liquid chroma-
tography; MC: microcystin; PDA: photodiode array; PRO-
TECH: phytoplankton responses to environmental
change; RMSE: root mean square error; Rrs: remote-sens-
ing-reflectance; SRP: soluble reactive phosphorus; TP:
total phosphorus; WHO: World Health Organisation;
WTP: willingness-to-pay.
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Risk perception and WTP for health-risk reductionsFigure 5
Risk perception and WTP for health-risk reductions. 
Histograms showing (a) the perceived risk from blooms of 
toxic cyanobacteria in Loch Leven (1 = no risk; 10 = very 
high risk) and (b) the distribution of WTP bids in relation to a 
reduction in the number of days on which toxic cyanobacte-
ria present risks to human health in Loch Leven from 90 (sta-
tus quo) to either 45 or zero days risk.
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