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Abstract

Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial
science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance
computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a
commonly used approach to conduct exposure assessment to determine the distribution of exposures in study
populations. geoAI technologies provide important advantages for exposure modeling in environmental
epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of
formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of
spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental
exposures across different geographic areas. The objectives of this commentary are to provide an overview of key
concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine
learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for
geoAI in environmental epidemiology.
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Background
Spatial science, also referred to as geographic information
science, plays an important role in many scientific disci-
plines as it seeks to understand, analyze, and visualize
real-world phenomena according to their locations. Spatial
scientists apply technologies such as geographic informa-
tion systems (GIS) and remote sensing to spatial (e.g.,
georeferenced) data to achieve these objectives – to
identify and make sense of patterns in space. Tied to the
current era of big data is the real-time generation of
spatial big data, which have become ubiquitously available
from geotagged social media posts on Twitter to environ-
mental sensors collecting meteorological information [1].
It has been suggested that at least 80% of all data are

geographic in nature, as the majority of information
around us can be georeferenced [1]. By this measure, 80%
of the 2.5 exabytes (2,500,000,000 gigabytes) of big data
generated everyday is geographic [2]. Data science, and by
extension spatial data science, are still evolving fields that
provide methods to organize how we think about and ap-
proach generating new knowledge from (spatial) big data.
The scientific field of geospatial artificial intelligence

(geoAI) was recently formed from combining innovations
in spatial science with the rapid growth of methods in arti-
ficial intelligence (AI), particularly machine learning (e.g.,
deep learning), data mining, and high-performance
computing to glean meaningful information from spatial
big data. geoAI is highly interdisciplinary, bridging many
scientific fields including computer science, engineering,
statistics, and spatial science. The innovation of geoAI
partly lies in its applications to address real-world prob-
lems. In particular, geoAI applications were showcased at
the inaugural 2017 Association of Computing Machinery
(ACM) Special Interest Group on Spatial Information
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(SIGSPATIAL) International Workshop on GeoAI: AI and
Deep Learning for Geographic Knowledge Discovery (the
steering committee was led by the U.S. Department of
Energy Oak Ridge National Laboratory Urban Dynamics
Institute), which included advances in remote sensing
image classification and predictive modeling for traffic.
Further, the application of AI technologies for knowledge
discovery from spatial data reflects a recent trend as dem-
onstrated in other scientific communities including the
International Symposium on Spatial and Temporal Data-
bases. These novel geoAI methods can be used to address
human health-related problems, for example, in environ-
mental epidemiology [3]. In particular, geoAI technologies
are beginning to be used in the field of environmental
exposure modeling, which is commonly used to conduct
exposure assessment in these studies [4]. Ultimately, one
of the overarching goals for integrating geoAI with envir-
onmental epidemiology is to conduct more accurate and
highly resolved modeling of environmental exposures
(compared to conventional approaches), which in turn
would lead to more accurate assessment of the environ-
mental factors to which we are exposed, and thus im-
proved understanding of the potential associations
between environmental exposures and disease in epidemi-
ologic studies. Further, geoAI provides methods to meas-
ure new exposures that have been previously difficult to
capture.
The purpose of this commentary is to provide an over-

view of key concepts surrounding the emerging field of
geoAI; recent advances in geoAI technologies and
applications; and potential future directions for geoAI in
environmental epidemiology.

Distinguishing between the buzzwords: the
spatial in big data and data science
Several key concepts are currently at the forefront of
understanding the geospatial big data revolution. Big
data, such as electronic health records and customer
transactions, are generally characterized by a high
volume of data; large variety of data sources, formats,
and structures; and a high velocity of new data creation
[5–7]. As a consequence, big data require specialized
methods and techniques for processing and analysis.
Data science broadly refers to methods to provide new
knowledge from the rigorous analysis of big data, inte-
grating methods and concepts from disciplines including
computer science, engineering, and statistics [8, 9]. The
data science workflow generally resembles an iterative
process of data import and processing, followed by
cleaning, transformation, visualization, modeling, and
finally communication of results [10].
Spatial data science is a niche and still forming field

focused on methods to process, manage, analyze, and
visualize spatial big data, providing opportunities to

derive dynamic insights from complex spatial phenom-
ena [11]. Spatial data science workflows are comprised
of steps for data manipulation, data integration, explora-
tory data analysis, visualization, and modeling – and are
specifically applied to spatial data often using specialized
software for spatial data formats [12]. For example, a
spatial data science workflow may include data wran-
gling using open source solutions such as the Geospatial
Data Abstraction Library (GDAL), scripting in R,
Python, and Spatial SQL for spatial analyses facilitated
by high-performance computing (e.g., querying big data
stored on a distributed data infrastructure through cloud
computing platforms such as Amazon Web Services for
analysis; or spatial big data analytics conducted on a
supercomputer), and geovisualization using D3. Spatial
data synthesis is considered an important challenge in
spatial data science, which includes issues related to
spatial data aggregation (of different scales) and spatial
data integration (harmonizing diverse spatial data types
related to format, reference, unit, etc.) [11]. Advances in
cyberGIS (defined as GIS based on advanced cyberinfras-
tructure and e-science) – and more broadly high-
performance computing capabilities for high-dimensional
data – have played an integral role in transforming our
capacity to handle spatial big data and thus for spatial data
science applications. For example, a National Science
Foundation-supported cyberGIS supercomputer called
ROGER was created in 2014, which enables the execution
of geospatial applications requiring advanced cyberinfras-
tructure through high-performance computing (e.g., > 4
petabytes of high-speed persistent storage), graphics
processing unit (GPU)-accelerated computing, big data-
intensive subsystems using Hadoop and Spark, and
Openstack cloud computing [11, 13].
As spatial data science continues to evolve as a

discipline, spatial big data are constantly expanding,
with two prominent examples being volunteered
geographic information (VGI) and remote sensing.
The term VGI encapsulates user-generated content
with a locational component [14]. In the past decade,
VGI has seen an explosion with the advent and con-
tinued expansion of social media and smart phones,
where users can post and thus create geotagged
tweets on Twitter, Instagram photos, Snapchat videos,
and Yelp reviews [15]. Usage of VGI should be ac-
companied by an awareness of potential legal issues
including but not limited to intellectual property, li-
ability, and privacy for the operator, contributor, and
user of VGI [16]. Remote sensing is another type of
spatial big data capturing characteristics of objects
from a distance such as imagery from satellite sensors
[17]. Depending on the sensor, remote sensing spatial
big data can be expansive in both its geographic
coverage (spanning the entire globe) as well as its
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temporal coverage (with frequent revisit times). In
recent years, we have seen an enormous increase in
satellite remote sensing big data as private companies
and governments continue to launch higher resolution
satellites. For example, DigitalGlobe collects over 1
billion km2 of high-resolution imagery each year as
part of its constellation of commercial satellites in-
cluding the WorldView and GeoEye spacecraft [18].
The U.S. Geological Survey and NASA Landsat program
has continually launched earth-observing satellites since
1972, with spatial resolutions as fine as 15 m and increas-
ing spectral resolution with each subsequent Landsat mis-
sion (e.g., Landsat 8 Operational Land Imager and
Thermal Infrared Sensor launched in 2013 are comprised
of 9 spectral bands and 2 thermal bands) [19].

Geospatial artificial intelligence (geoAI): nascent
origins
Data science involves the application of methods in
scientific fields such as artificial intelligence (AI) and
data mining. AI refers to machines that make sense of
the world, automating processes that create scalable in-
sights from big data [5, 20]. Machine learning is a subset
of AI that focuses on computers acquiring knowledge to
iteratively extract information and learn from patterns in
raw data [20, 21]. Deep learning is a cutting-edge type of
machine learning that draws inspiration from brain
function, representing a flexible and powerful way to en-
able computers to learn from experience and understand
the world as a nested hierarchy of concepts, where the
computer is able to learn complicated concepts by build-
ing them from simpler concepts [20]. Deep learning has
been applied to natural language processing, computer
vision, and autonomous driving [20, 22]. Data mining
refers to techniques to discover new and interesting
patterns from large datasets such as identifying frequent
itemsets in online transaction records [23]. Many
techniques for data mining were developed as part of
machine learning [24]. Applications of data mining
techniques include recommender systems and cohort
detection in social networks.
Geospatial artificial intelligence (geoAI) is an emerging

science that utilizes advances in high-performance com-
puting to apply technologies in AI, particularly machine
learning (e.g., deep learning) and data mining to extract
meaningful information from spatial big data. geoAI is
both a specialized field within spatial science because
particular spatial technologies, including GIS, must be
used to process and analyze spatial data, and an applied
type of spatial data science, as it is specifically focused
on applying AI technologies to analyze spatial big data.
The first-ever International Workshop on geoAI orga-
nized as part of the 2017 ACM SIGSPATIAL International
Conference on Advances in Geographic Information

Systems brought together scientists across diverse
disciplines, including geoscientists, computer scientists,
engineers, and entrepreneurs to discuss the latest trends
in deep learning for geographical data mining and know-
ledge discovery. Featured geoAI applications included
deep learning architectures and algorithms for feature rec-
ognition in historical maps [25]; multi-sensor remote
sensing image resolution enhancement [26]; and identifi-
cation of the semantic similarity in VGI attributes for
OpenStreetMap [27]. The geoAI Workshop is one
example of the recent trend in the application of AI to
spatial data. For example, AI research has been presented
at the International Symposium on Spatial and Temporal
Databases, which features research in spatial, temporal,
and spatiotemporal data management and related
technologies.

Opportunities for geoAI in environmental
epidemiology
Given the advances and capabilities on display in recent
research, we can begin to connect the dots regarding
how geoAI technologies can be specifically applied to
environmental epidemiology. To determine the factors
to which we may be exposed and thus may influence
health, environmental epidemiologists implement direct
methods of exposure assessment, such as biomonitoring
(e.g., measured in urine), and indirect methods, such as
exposure modeling. Exposure modeling involves the
development of a model to represent a particular
environmental variable using various data inputs (such
as environmental measurements) and statistical methods
(such as land use regression and generalized additive
mixed models) [28]. Exposure modeling is a cost-
effective approach to assess the distribution of exposures
in particularly large study populations compared to
applying direct methods [28]. Exposure models include
basic proximity-based measures (e.g., buffers and
measured distance) to more advanced modeling such as
kriging [3]. Spatial science has been critical in exposure
modeling for epidemiologic studies over the past two
decades, enabling environmental epidemiologists to use
GIS technologies to create and link exposure models to
health outcome data using geographic variables (e.g.,
geocoded addresses) to investigate the effects of factors
such as air pollution on the risk of developing diseases
such as cardiovascular disease [29, 30].
geoAI methods and big data infrastructures (e.g.,

Spark and Hadoop) can be applied to address challenges
surrounding exposure modeling in environmental
epidemiology – including inefficiency in computational
processing and time (particularly when big data are
compounded with large geographic study areas) and data-
related constraints that affect spatial and/or temporal
resolution. For example, previous exposure modeling
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efforts have often been associated with coarse spatial reso-
lutions, impacting the extent to which the exposure model
is able accurately estimate individual-level exposure (i.e.,
exposure measurement error), as well as limitations in
temporal resolution which may result in failure to capture
exposures during time windows relevant to developing the
disease of interest [28]. Advances in geoAI enable
accurate, high-resolution exposure modeling for envir-
onmental epidemiologic studies, especially regarding
high-performance computing to handle big data (big
in space and time; spatiotemporal) as well as developing
and applying machine and deep learning algorithms and
big data infrastructures to extract the most meaningful
and relevant pieces of input information to, for example,
predict the amount of an environmental factor at a
particular time and location.
A recent example of geoAI in action for environmental

exposure assessment was a data-driven method devel-
oped to predict particulate matter air pollution < 2.5 μm
in diameter (PM2.5) in Los Angeles, CA, USA [4]. This
research utilized the Pediatric Research using the Inte-
grated Sensor Monitoring Systems (PRISMS) Data and
Software Coordination and Integration Center (DSCIC)
infrastructure [4, 31]. A spatial data mining approach
using machine learning and OpenStreetMap (OSM)
spatial big data was developed to enable selection of the
most important OSM geographic features (e.g., land use
and roads) predicting PM2.5 concentrations. This spatial
data mining approach addresses important issues in air
pollution exposure modeling regarding the spatial and
temporal variability of the relevant “neighborhood”
within which to determine how and which factors
influence predicted exposures (spatial nonstationarity is
discussed later). Using millions of geographic features
available from OSM, the algorithm to create the PM2.5

exposure model first identified U.S. Environmental
Protection Agency (EPA) air monitoring stations that ex-
hibited similar temporal patterns in PM2.5 concentra-
tions. The algorithm next trained a random forest model
(a popular machine learning method using decision trees
for classification and regression modeling) to generate
the relative importance of each OSM geographic feature.
This was performed by determining the geo-context, or
which OSM features and within what distances (e.g.,
100 m vs. 1000 m radius buffers) are associated with air
monitoring stations (and their measured PM2.5 levels)
characterized by a similar temporal pattern. Finally, the
algorithm trained a second random forest model using
the geo-contexts and measured PM2.5 at the air monitor-
ing stations to predict PM2.5 concentrations at unmeas-
ured locations (i.e., interpolation). Prediction errors were
minimized through incorporating temporality of mea-
sured PM2.5 concentrations in each stage of the algo-
rithm, although modeling would have been improved

with time-varying information on predictors. The model
predictive performance using measured PM2.5 levels at the
EPA air monitoring stations as the gold standard showed
an improvement compared to using inverse distance
weighting, a commonly used spatial interpolation method
[4]. Through this innovative approach, Lin et al. (2017) de-
veloped a flexible spatial data mining-based algorithm that
removes the need for a priori selection of predictors for
exposure modeling, as important predictors may depend
on the specific study area and time of day – essentially
letting the data decide what is important for exposure
modeling [4].

Future directions
The application of geoAI, specifically using machine
learning and data mining, to air pollution exposure
modeling described in Lin et al. (2017) demonstrates
several key advantages for exposure assessment in envir-
onmental epidemiology [4]. geoAI algorithms can in-
corporate large amounts of spatiotemporal big data,
which can improve both the spatial and temporal resolu-
tions of the output predictions, depending on the spatial
and temporal resolutions of the input data and/or down-
scaling methodologies to create finer resolution data
from relatively coarser data. Beyond incorporating high-
resolution big data that are being generated in real-time,
existing historical big data, such as Landsat satellite
remote sensing imagery from 1972 to present, can be
used within geoAI frameworks for historical exposure
modeling – advantageous to studying chronic diseases with
long latency periods. This seamless usage and integration
of spatial big data is facilitated by high-performance
computing capabilities, which provide a computationally
efficient approach to exposure modeling using high-
dimensional data compared to other existing time-intensive
approaches (e.g., dispersion modeling for air pollution) that
may lack such computational infrastructures.
Further, the flexibility of geoAI workflows and algo-

rithms can address properties of environmental expo-
sures (as spatial processes) that are often ignored during
modeling such as spatial nonstationarity and anisotropy
[32]. Spatial nonstationarity occurs when a global model
is unsuitable for explaining a spatial process due to local
variations in, for example, the associations between the
spatial process and its predictors (i.e., drifts over space)
[32, 33]. Lin et al. (2017) addressed spatial nonstationar-
ity through creating unique geo-contexts using the OSM
geographic features for air monitoring stations grouped
into similar temporal patterns. Anisotropic spatial
processes are characterized by directional effects [32],
for example, the concentration of an air pollutant may
be affected by wind speed and wind direction [34]. The
flexibility in geoAI workflows naturally allows for scal-
ability to use and modify algorithms to accommodate
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more big data (e.g., unconventional datasets such as
satellite remote sensing to derive city landscapes for air
quality dispersion modeling), different types of big data,
and extending modeling to predict different environmen-
tal exposures in different geographic areas. An additional
facet of this flexibility includes the ability for many ma-
chine learning and data mining techniques to be con-
ducted without a high degree of feature engineering,
enabling the inclusion of large amounts of big data, for ex-
ample greater amounts of surrogate variables when direct
measures are unavailable. In addition, another potential
area of application for geoAI involves algorithm develop-
ment to quickly and accurately classify and identify objects
from remote sensing data that have been previously
difficult to capture, for example, features of the built envir-
onment based on spectral and other characteristics to
generate detailed 3D representations of city landscapes.
Ultimately, geoAI applications for environmental

epidemiology move us closer to achieving the goal of
providing a highly resolved and more accurate picture of
the environmental exposures to which we are exposed,
which can be combined with other relevant information
regarding health outcomes, confounders, etc., to investi-
gate whether a particular environmental exposure is as-
sociated with a particular outcome of interest in an
epidemiologic study. However, as with any exposure
modeling endeavor, there must be careful scrutiny of
data quality and consideration of data costs. In the con-
text of the Lin et al. (2017) study [4], although this type
of data-driven approach enables flexibility in the amount
of spatial big data that can be incorporated and in allow-
ing the data to determine model inputs, it is incumbent
on the spatial data scientist to evaluate data quality and
assess whether or not the spatial resolution and other
data attributes are useful for the application at hand – to
avoid what is referred to as garbage in, garbage out
(GIGO) in computer science. Related to data quality is
the importance of data-driven approaches to be balanced
against the need for domain-specific expertise. For ex-
ample, if a particular variable that is a known predictor
of PM2.5 (irrespective of time and space) is not selected
as part of a data-driven method for inclusion into expos-
ure modeling, this may require modifications to the
algorithm, evaluation of the input data, etc. Finally, as a
currently evolving field, geoAI requires the expertise of
multiple disciplines, including epidemiology, computer
science, engineering, and statistics, to establish best
practices for how to approach environmental exposure
modeling given the complexities introduced by the
biological, chemical, and physical properties of different
environmental exposures, wide-ranging algorithms
that can be developed and applied, and heterogeneous
spatial big data characterized by varying scales,
formats, and quality.

Conclusions
geoAI is an emerging interdisciplinary scientific field
that harnesses the innovations of spatial science, artifi-
cial intelligence (particularly machine learning and deep
learning), data mining, and high-performance computing
for knowledge discovery from spatial big data. geoAI
traces part of its roots from spatial data science, which is
an evolving field that aims to help organize how we
think about and approach processing and analyzing
spatial big data. Recent research demonstrates move-
ment towards practical applications of geoAI to address
real-world problems from feature recognition to image
enhancement. geoAI offers several advantages for environ-
mental epidemiology, particularly for exposure modeling
as part of exposure assessment, including the capability to
incorporate large amounts of spatial big data of high
spatial and/or temporal resolution; computational
efficiency regarding time and resources; flexibility in
accommodating important features of spatial (environ-
mental) processes such as spatial nonstationarity; and
scalability to model different environmental exposures
in different geographic areas. Potential future geoAI
applications for environmental epidemiology should
utilize cross-disciplinary approaches to developing and
establishing rigorous and best practices for exposure
modeling that includes careful consideration of data
quality and domain-specific expertise.
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