
Krall et al. Environmental Health           (2022) 21:35  
https://doi.org/10.1186/s12940-022-00844-0

RESEARCH

Assessing the health estimation capacity 
of air pollution exposure prediction models
Jenna R. Krall1* , Joshua P. Keller2 and Roger D. Peng3 

Abstract 

Background: The era of big data has enabled sophisticated models to predict air pollution concentrations over 
space and time. Historically these models have been evaluated using overall metrics that measure how close pre-
dictions are to monitoring data. However, overall methods are not designed to distinguish error at timescales most 
relevant for epidemiologic studies, such as day-to-day errors that impact studies of short-term health associations.

Methods: We introduce frequency band model performance, which quantifies health estimation capacity of air qual-
ity prediction models for time series studies of air pollution and health. Frequency band model performance uses a 
discrete Fourier transform to evaluate prediction models at timescales of interest. We simulated fine particulate matter 
 (PM2.5), with errors at timescales varying from acute to seasonal, and health time series data. To compare evaluation 
approaches, we use correlations and root mean squared error (RMSE). Additionally, we assess health estimation capac-
ity through bias and RMSE in estimated health associations. We apply frequency band model performance to  PM2.5 
predictions at 17 monitors in 8 US cities.

Results: In simulations, frequency band model performance rates predictions better (lower RMSE, higher correla-
tion) when there is no error at a particular timescale (e.g., acute) and worse when error is added to that timescale, 
compared to overall approaches. Further, frequency band model performance is more strongly associated (R2 = 0.95) 
with health association bias compared to overall approaches (R2 = 0.57). For  PM2.5 predictions in Salt Lake City, UT, 
frequency band model performance better identifies acute error that may impact estimated short-term health 
associations.

Conclusions: For epidemiologic studies, frequency band model performance provides an improvement over exist-
ing approaches because it evaluates models at the timescale of interest and is more strongly associated with bias 
in estimated health associations. Evaluating prediction models at timescales relevant for health studies is critical to 
determining whether model error will impact estimated health associations.

Keywords: Ambient air pollution, Chemical transport model, Epidemiology, Exposure assessment, Fourier transform, 
Health assessment, Particulate matter
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Background
The United States has for decades monitored air pollu-
tion levels via the Environmental Protection Agency’s 
network of monitors as well as state and local monitors 

[36]. These monitors tend to be sited around large urban 
centers or around significant sources of pollution, and 
as a result, large swaths of the country are typically not 
monitored and knowledge of air pollution concentrations 
in those areas has historically been minimal. In the past, 
one major consequence of this lack of monitoring is that 
many areas of the country could not be included in stud-
ies examining the health associations of air pollutants [2, 
39, 44, 55]. The era of big data along with novel machine 
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learning techniques and statistical models have allowed 
us to predict ambient air pollution concentrations with 
greater accuracy and precision than in the past [3, 18, 
19, 28, 32]. This new generation of models provides air 
pollution prediction at finer spatial and temporal scales 
by leveraging multiple sources of data such as satellite 
data, computer weather models, chemistry models, land 
use data, emissions source information, and/or pollution 
monitoring data. These input data sources have varying 
strengths, for example models may incorporate data from 
monitors that provide ground truth observations, but 
have generally limited spatial coverage, and from chemi-
cal transport models such as the Community Multiscale 
Air Quality (CMAQ) model, which have good spatial 
coverage but are often biased [25, 51]. Predicting air pol-
lution concentrations for epidemiologic applications is 
challenging and must balance the shortcomings of each 
input data source.

Given the development of modern prediction models, 
it is natural to want to evaluate their performance. How-
ever, the nature of model evaluation depends critically on 
the application in which the model will be applied [10, 
32]. Without information about study-specific context, 
it is impossible to provide an unqualified assessment of a 
model that is informative about the specific application. 
For example, studies of the acute health associations of 
ambient air pollution typically focus on day-to-day vari-
ation in pollutants and health outcomes [2, 44, 55], sug-
gesting that models predicting pollution concentrations 
for such studies need to do well predicting the higher fre-
quency temporal components. Studies of chronic health 
associations of pollution often make broad comparisons 
across larger geographies [15, 20, 29, 33], suggesting 
that prediction models there need to reproduce spatial 
variations in pollution at larger scales, but not finer scale 
fluctuations.

To evaluate exposure prediction models, metrics such 
as R2, root mean square error (RMSE), or normalized 
root mean square error are commonly used to quantify 
how predictions vary from ground truth observations 
[7, 10, 11, 14, 17, 25, 49, 51]. More recent studies have 
proposed correlation [35] and variance ratios [7], which 
also capture overall deviations in variability, as being 
more relevant for evaluating prediction models for use in 
health studies. Although all these metrics evaluate simi-
larity between model predictions and observations, they 
do not focus on those errors in prediction models that 
will most impact estimated health associations. As an 
example, suppose model predictions correlate well with 
the observed data at the seasonal and monthly temporal 
scales, but correlations are low at the day-to-day scale. 
Metrics such as R2 are impacted by performance at all 
temporal scales and will not highlight poor performance 

at the day-to-day scale most relevant for acute epidemio-
logic studies. Conversely, for a model that performs well 
primarily at the day-to-day scale, these metrics may be 
overly pessimistic for model performance in an acute epi-
demiologic study.

Existing methods for evaluating prediction models do 
not incorporate temporal and spatial scales of interest. 
This presents a gap in the use of novel methods, such as 
machine learning approaches, for exposure estimation 
in epidemiologic studies. Therefore, the objective of the 
present research is to propose a new approach to evalu-
ate prediction models that focuses on temporal scales 
that will most impact estimated health associations. We 
demonstrate how usual model performance metrics such 
as RMSE can fail to capture errors in prediction models 
that are relevant to epidemiologic studies. Additionally, 
we propose frequency band model evaluation to deter-
mine whether a given prediction model will provide good 
estimates of health associations. Our approach evalu-
ates the health estimation capacity of prediction models 
by focusing model evaluation on the timescale of inter-
est of the health effect. We illustrate model evaluation 
using particulate matter air pollution less than 2.5 μ m in 
aerodynamic diameter  (PM2.5), though our methods are 
applicable to prediction models of air pollutants gener-
ally (e.g., ozone and nitrogen dioxide  (NO2)).

Methods
We observe a time series of ground-truth observations 
z(t), which may represent air pollution measurements 
(e.g., for  PM2.5) taken at a central site monitor. The goal 
of an exposure prediction model is to accurately replicate 
such observations with a predicted time series z∗(t) that 
can be computed at locations and times without monitor-
ing data. The predicted series z∗(t) may represent output 
from a regression model, a machine learning algorithm, 
a computer simulation model such as the CMAQ model, 
or any combination of these approaches. While we will 
focus on temporal data series z(t) and predictions z∗(t) 
indexed by time t, we discuss extensions of these ideas to 
the spatial domain in the Discussion.

Our goal is to compare a time series of model predic-
tions, z∗(t), with a reference time series of ground-truth 
observations, z(t), for times t = 1, …, n. Existing 
approaches include quantifying prediction accuracy 
using correlation r =

√
R2 = Cor(z∗(t), z(t)) and 

RMSE =
√

1
n

∑

n

t=1 (z
∗(t)− z(t))2 [7, 11, 14, 35]. Addi-

tional existing approaches include the log variance ratio 
(LVR), defined as log

(

Var(z∗(t))
Var(z(t))

)

 [7]. The LVR captures 
differences in temporal variation between models, which 
can impact precision in estimated health associations. 
We refer to these approaches as overall model 
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performance measures, which we denote by roverall, 
RMSEoverall, and LVRoverall.

Overall model performance can be impacted by model 
errors at timescales different than the timescale of inter-
est. Therefore to better capture health estimation capac-
ity, we propose frequency band model performance. 
Frequency band model performance differs from existing 
approaches by restricting the model predictions z∗(t) and 
observations z(t) to their timescale-specific components 
to create measures r(k), RMSE(k), and LVR(k), which rep-
resent correlation, RMSE, and LVR for a chosen range of 
frequencies denoted as band k. To extract the frequency 
band k components, we use a discrete Fourier transform 
[6, 23, 40]. For our reference time series, z(t), we partition 
the range of frequencies [0, n/2) into non-overlapping 
frequency bands k = 1, …, K such that

The same approach is used to partition z∗(t) into 
components z∗

k
(t) . Then, r(k) = Cor

(

z∗
k
(t), zk(t)

)

 , 
RMSE(k) =

�

1

n

∑n

t=1

�

z∗
k
(t) − zk (t)

�2 , and 
LVR(k) = log

⎛

⎜

⎜

⎝

Var(z∗
k
(t))

Var(zk )

�

⎞

⎟

⎟

⎠

 . To facili-

tate comparisons between overall and frequency band k 
RMSE, we scale RMSEoverall and RMSE(k) by the stand-
ard deviation of the reference time series z(t) and zk(t), 
respectively.

(1)z(t) =
K
∑

k=1

zk(t)

To understand the advantage of frequency band model 
evaluation, consider a hypothetical time series of  PM2.5 
observations and model predictions (Fig.  1). Existing 
overall model performance metrics (roverall, RMSEoverall, 
and LVRoverall) are applied to the time series on the left, 
which is impacted by differences between observations 
and model predictions at all frequencies. In contrast, fre-
quency band k model performance restricts evaluation 
of model performance to the frequency of interest using 
a discrete Fourier transform (e.g., high frequency, such 
as day-to-day variation) and is not impacted by errors 
at other frequencies (e.g., medium frequency, such as 
monthly variation, and low frequency, such as seasonal 
variation) (Fig. 1).

As in previous work estimating health associations 
of PM air pollution [23], we set K = 6 and consider fre-
quency bands of k = 1: [1,6) cycles per year correspond-
ing to seasonal components, k = 2: [6,12) cycles per year, 
k = 3: [12,26) cycles per year, k = 4: [26,52) cycles per 
year, k = 5: [52,104) cycles per year, and k = 6: [104,183) 
cycles per year corresponding to acute components. Our 
particular interest for acute health associations of air 
pollution is in the acute timescale captured by the fre-
quency band k = 6 model performance (k = 6: [104,183) 
cycles per year), corresponding to a timescale of a few 
days or less. However, frequency band model perfor-
mance can be applied to any timescales that are of 
interest.

Fig. 1 Hypothetical example of overall and frequency band model evaluation. The existing approach of overall model performance is impacted by 
errors in time series at all frequencies (e.g., high, medium, and low), whereas our frequency band model evaluation quantifies errors in the relevant 
frequency (e.g., high frequency extracted using discrete Fourier transform) for evaluating prediction models in acute health studies
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We first conduct a simulation study to determine how 
errors at specific frequency bands impact overall model 
performance measures roverall, RMSEoverall, and LVRoverall as 
well as frequency band k model performance measures r(k), 
RMSE(k), and LVR(k). We hypothesize that errors at a specific 
frequency band k′ impact the overall model performance 
(roverall, RMSEoverall, and LVRoverall) and the model perfor-
mance at the same frequency band k′ (r(k′), RMSE(k′), and 
LVR(k′)), but not model performance at different frequency 
bands k ≠ k′. For example, seasonal error that occurs within 
the first frequency band (k = 1 corresponding to [1,6) cycles 
per year) would impact model performance measured by 
roverall, RMSEoverall, LVRoverall, r(1), RMSE(1), and LVR(1), but 
not model performance at higher frequency bands relevant 
for estimating acute health associations (e.g., r(6), RMSE(6), 
and LVR(6)). This implies that if we are primarily interested 
in model predictions at frequency band k′, model perfor-
mance measured by r(k′), RMSE(k′), and LVR(k′) will better 
reflect errors relevant for frequency band k′ while limiting 
the influence of errors at other frequency bands k ≠ k′.

To simulate observed air pollution time series that are 
non-negative and right-skewed, let z(t) = exp(x(t)σx + μx), 
where x(t) is a time series with Var(x(t)) = 1, and where μx 
and σx represent the mean and standard deviation of the 
log-transformed time series. We specify μx = 1.9 log μ g/
m3 and σx = 0.6 log μ g/m3 to reflect log-transformed 
concentrations of  PM2.5 in New York City from 2010 to 
2018. We simulate the time series 
x(t) =

∑

k∈{1,2,6} xk (t)
√

Var
(

∑

k∈{1,2,6} xk (t)
)

 consisting of frequency bands 

k = 1, 2, 6 to approximately reflect seasonal, monthly, and 
acute time trends found in air pollution concentrations. 
Each xk(t) is specified using cosine functions with varying 
wavelengths (details in Additional file, Section A) and 
Var(xk(t)) = 1. As a sensitivity analysis, we increase the 
relative seasonal variation to reflect observed relative 
variability across timescales in  PM2.5 data, i.e. 
Var(x(1)(t)) ∈ {1.5,2}. We simulate 100 observed time 
series with 3 years of data each (n = 1095).

We simulate model predictions by incorporating classi-
cal measurement error at varying timescales into simulated 
observed time series. Our model predictions are simulated 
as z∗(t) = exp(x∗(t)σx + μx), with μx = 1.9 and σx = 0.6 as in 
the simulated observed time series. The log-transformed 
simulated model predictions x∗(t) = x(t) + wk(t)σc, where 
x(t) is the simulated observed time series (log-transformed 
with Var(x(t)) = 1) and wk(t) is the standardized error com-
ponent at frequency band k with Var(wk(t)) = 1, The mag-
nitude of error is represented by the standard deviation 
σc ∈ {0.2,0.4,0.6,0.8}. We obtain wk(t) as the standardized k 
frequency band component from a discrete Fourier trans-
form of standard normal error. Therefore, on the logarith-
mic scale, our simulated model predictions are the simulated 

observed time series with classical error at frequency band k. 
As k varies from 1, …, 6, the timescale of the error changes 
from seasonal (k = 1) to acute (k = 6) (Fig. 2). For each of our 
100 simulated observed time series with n = 1095, we simu-
late 24 model prediction time series with varying classical 
measurement error (four varying magnitudes of error σc and 
six error frequencies wk(t) k = 1, …, 6).

Health counts (e.g., number of deaths or emer-
gency department (ED) visits for day t) are simulated 
as Poisson(μ(t)) where μ(t) = exp(β0 + β1zresidual(t) + 0.0
3zfitted(t)). The residuals zresidual(t) and fitted zfitted(t) are 
obtained from a regression of the simulated observed 
time series z(t) on a natural spline of time with 24 degrees 
of freedom to capture seasonal and monthly trends. 
Therefore, the residuals zresidual(t) represent the sub-
monthly frequency components of z(t) relevant for acute 
health associations. We specify the acute health asso-
ciation β1 = log(1.1)/10 corresponding to a relative risk 
of 1.1 per 10 μ g/m3 increase in  PM2.5. The base rate of 
health β0 = 5 yields approximately 200 health counts per 
day (i.e., deaths or ED visits) and is selected to reflect car-
diorespiratory ED visits observed in large U.S. cities [34].

We estimate health associations for simulated model 
predictions with varying magnitudes of classical error 
(σc) and error wk(t) at frequencies 1, …, 6. The health 
association model is an overdispersed Poisson time series 
regression model controlling for non-acute temporal 
trends with a natural spline of time with 280 degrees of 
freedom per year to isolate the acute time series. This 
number of degrees of freedom is much larger than gen-
erally used in the epidemiologic literature to properly 
adjust for wk(t) error added at k = 5 [52, 104) cycles per 
year. In practice, confounding in epidemiologic studies 
of acute health associations is controlled for by both a 
smooth function of time (generally with <10 degrees of 
freedom per year) as well as smooth functions for mete-
orology including temperature and humidity [37, 38, 44, 
45, 50]. To evaluate the estimated health associations for 
the model predictions, we compute the estimated health 
association RMSE and percent relative mean bias in the 
estimated health association (mean bias/β1 × 100). Using 
scatterplots and R2, we examine associations of both 
mean overall model performance and frequency band k 
model performance with health association RMSE and 
percent relative mean bias across 100 simulated datasets.

We also compare observations of  PM2.5 to predictions 
from an exposure model to demonstrate both overall 
model performance and frequency band k = 6 model 
performance. To represent “ground-truth” observations, 
we develop a dataset of observed daily  PM2.5 data in μ 
g/m3 from 17 monitors across 8 US cities from 2010 to 
2017 using the US Environmental Protection Agency’s 
(US EPA) Air Quality System. We select monitors from 
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cities based on geographic locations throughout the con-
tinental US and based on previous studies of air pollution 
and health [23, 34, 44, 55], including Atlanta, GA (num-
ber of monitoring sites: n = 4); Dallas, TX (n = 1); Hou-
ston, TX (n = 1); Los Angeles, CA (n = 5); New York City, 
NY (n = 1); Pittsburgh, PA (n = 2); Seattle/Tacoma, WA 
(n = 1); and Salt Lake City, UT (n = 2). For each monitor, 
we interpolate  PM2.5 means for short gaps (<10 days) in 
the data for each city to create uninterrupted time series. 
We include only monitors that had at least 1 year of daily 
concentrations after interpolation. We utilize the longest 
complete time series for each monitor.

As our prediction model, we utilize predictions from 
the Fused Air Quality Surface Using Downscaling 
(FAQSD) approach at 2010 US census tracts from the 
US EPA [52]. FAQSD uses a Bayesian space-time model 
to fuse monitoring data with CMAQ model predictions 
and develop predictions at 2010 US census tracts [3–5, 
42]. CMAQ is an atmospheric chemical transport model 
that provides predictions 12 × 12 km resolution grids 
across the US [12, 13] and may be calibrated or fused 
with observed monitoring data [21]. We link FAQSD 
predictions to monitors using the census tract where the 
monitor is located. We compare the observed  PM2.5 data 
and FAQSD using overall performance measures (rover-

all, RMSEoverall, and LVRoverall) and frequency band k = 6 
model performance (r(6), RMSE(6), and LVR(6)), where 

k = 6 corresponds to [104,183) cycles per year and rep-
resents variation relevant for acute health associations 
at timescales <3.5 days [23]. All analyses were conducted 
using R version 4.0 [41].

Results
In our simulation study, we evaluate model performance 
by comparing z(t) and z∗(t) using overall model perfor-
mance (roverall, RMSEoverall, and LVRoverall) and frequency 
band k model performance r(k), RMSE(k), and LVR(k). 
We focus on frequency band k = 6 model performance, 
(r(6), RMSE(6), and LVR(6)), which evaluates the high fre-
quency of the component of the model and is most rel-
evant for estimating acute health associations. Fig.  3 
shows the mean across 100 simulated datasets for overall 
model performance measures (orange circles) and fre-
quency band k = 6 model performance measures (green 
triangles) for error wk(t), k = 1, …, 6. With error wk(t) at 
frequency bands k = 1, …, 5, the frequency band k = 6 
model performance (r(6), RMSE(6), and LVR(6)) rated the 
prediction model better compared to the overall model 
performance (roverall, RMSEoverall, and LVRoverall). When 
error is added using the high frequency band k = 6, i.e., 
component w(6)(t), the frequency band k = 6 model per-
formance rated the prediction model worse compared to 
the overall model performance. The results are consist-
ent across model performance measures of r, RMSE and 

Fig. 2 Example simulated observed and predicted  PM2.5 time series. Observed time series and model predictions are shown magnitude of error 
σc = 0.8 and frequency band classical error wk(t) for k = 1, …, 6
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LVR. Further, the results are consistent for frequency band 
k = 1, 2 model performance (Additional file, Fig. S1), with 
frequency band k model performance better reflecting 
errors at frequency band k. We did not examine frequency 
band k = 3, …, 5 model performance because the simu-
lated observed time series did not have variation at those 
frequencies. In summary, overall model performance can 
be both overly pessimistic when the prediction model has 
error at timescales not relevant to the study design and 
overly optimistic when the prediction model has error 
at relevant timescales. Frequency band k model perfor-
mance better reflects error at timescales of interest.

As a sensitivity analysis, we increase the relative 
variance of the seasonal component of the simulated 
observed time series Var(x(1)(t)) ∈ {12, 1.52,  22} while keep-
ing Var(x(2)(t)) = Var(x(6)(t)) = 1 and the total variance 
Var(x(t)) = 1 to reflect observed timescale variability in 
 PM2.5 concentrations. Changing the variance of the sea-
sonal component alone did not impact overall model 
performance. However the frequency band k = 6 model 
performance rates the models worse with increasing 
Var(x(1)(t)) (Additional file, Fig.  S2). Because the entire 
time series is scaled such that Var(x(t)) = 1, the acute 
component of the simulated time series has decreasing 

Fig. 3 Comparison of simulated time series and model predictions for overall and frequency band model performance. Results are shown 
using overall model performance (orange circles) and frequency band k = 6 model performance (green triangles) for correlation r, RMSE, and 
LVR. For model predictions, classical error wk(t) was added to simulated observations at frequency bands k = 1, …, 6 with magnitude of error 
σc = {0.2,0.4,0.6,0.8}
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variance as Var(x(1)(t)) increases. In other words, holding 
the total variability of the time series constant, the same 
magnitude of error σc has a stronger impact on the acute 
component of the time series when the acute component 
has lower relative variance.

To determine whether overall model performance or 
frequency band k model performance better capture 
health estimation capacity, we examine associations of 
model performance measures (r, RMSE, LVR) with bias 
in estimated health associations as well as estimated 
health association RMSE. We focus on frequency band 
k = 6 model performance that evaluates the high fre-
quency component of the time series relevant for esti-
mating acute health associations. We expect larger bias 
and RMSE in estimated acute health associations for 
model predictions with high frequency error wk = 6(t). 
Figure  4 shows the percent relative mean bias against 

the mean overall model performance (orange circles) 
and the mean frequency band k = 6 model performance 
(green triangles). The solid points indicate when acute 
frequency band error w(6)(t) is added and therefore 
expected to strongly impact bias in the acute health 
association, and outlined otherwise. The size of the point 
indicates the magnitude of error added. For the fre-
quency band k = 6 model performance, r(6), RMSE(6), and 
LVR(6) are more strongly associated with bias compared 
to the overall performance measures (roverall, RMSEoverall, 
and LVRoverall). Similarly, the association between fre-
quency band k = 6 model performance and health RMSE 
is also stronger compared to the overall performance 
(Fig. 5). The linear association R2 with acute health asso-
ciation measures (percent relative mean bias and health 
RMSE) is stronger for frequency band k = 6 model per-
formance compared to overall model performance 

Fig. 4 Associations of percent relative mean bias in estimated health associations with model performance. Results are shown using overall model 
performance (orange circles) and frequency band k = 6 model performance (green triangles) for correlation r, RMSE, and LVR. For model predictions, 
classical error wk(t) was added to simulated observations at frequency bands k = 1, …, 6 (acute error wk = 6(t) is shaded) with magnitude of error 
σc = {0.2,0.4,0.6,0.8}
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(Table  1). For example, percent relative mean bias 
was more strongly associated with frequency band 
k = 6 RMSE(6) (R2 = 0.95) compared to overall RMSEoverall 
(R2 = 0.57).

For the analysis of  PM2.5 predictions, the locations of 
the selected  PM2.5 monitors were spread across the US 
(Additional file, Fig.  S3). The available daily observa-
tions range from 593 days (monitor site 420030008 in 
Pittsburgh) to 2351 days (monitor site 360810124 in New 
York City) (Additional file, Table S1). The lowest median 
 PM2.5 concentration is in Seattle/Tacoma (5.4 μ g/m3) 
and the highest in Los Angeles (12 μ g/m3). Figure  6 
compares the overall concentration time series and three 
frequency band components from a discrete Fourier 
transform (Eq. 1): k = 1 or the seasonal component, k = 2 
or the monthly component, and k = 6 the acute compo-
nent. The monitors include 060374008 in Los Angeles 
where FAQSD and the monitor differ considerably at all 
timescales, 131210032 in Atlanta where FAQSD and the 

monitor are similar at all timescales, and 490353006 in 
Salt Lake City where FAQSD performs similarly to the 
monitor at longer timescales (monthly, seasonal), but not 
at shorter timescales (acute).

Comparing overall performance and frequency band 
k = 6 model performance of FAQSD for all 17 monitors, 

Fig. 5 Associations of health association RMSE with model performance . Results are shown using model performance (orange circles) and 
frequency band k = 6 model performance (green triangles) for correlation r, RMSE, and LVR. For model predictions, classical error wk(t) was added to 
simulated observations at frequency bands k = 1, …, 6 (acute error wk = 6(t) is shaded) with magnitude of error σc = {0.2,0.4,0.6,0.8}

Table 1 R2 for the linear relationship of exposure metrics with 
health measures

Health measure Metric Frequency band 
k = 6

Overall

Rel. mean bias (%) Correlation r 0.89 0.57

LVR 0.96 0.58

RMSE 0.95 0.57

Health RMSE Correlation r 0.90 0.52

LVR 0.96 0.53

RMSE 0.94 0.52
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the overall performance measures rate FAQSD better 
compared to frequency band k = 6 model performance 
(Fig.  7). The three example monitors are shown in red. 
For overall model performance, correlations below 
r = 0.89 (R2 = 0.8) are considered low. For 060374008 in 
Los Angeles, both the overall and frequency band k = 6 
measures rate FAQSD low (r = 0.71 and r = 0.56, respec-
tively). For 131210032 in Atlanta, both the overall and 
frequency band k = 6 model performance measures rate 
FAQSD well (r = 0.97 and r = 0.89, respectively). How-
ever, at 490353006 in Salt Lake City, there is a large dis-
crepancy between the overall and frequency band k = 6 
correlation and RMSE, where the performance of FAQSD 
may be overrated using the overall approach and may be 
overly optimistic about its acute health estimation capac-
ity (e.g., r = 0.92 and r = 0.52, respectively). This is likely 
driven by the good performance of FAQSD at this moni-
tor at the seasonal timescale, but not at the acute time-
scale (Fig. 6).

Discussion
We propose frequency band model performance for eval-
uating health estimation capacity of air quality prediction 
models. When comparing model predictions to truth in 
simulations, frequency band k correlation r(k), RMSE(k), 
and LVR(k) better reflect error at specific timescales com-
pared to overall metrics. Of particular relevance to acute 
epidemiologic studies, frequency band k = 6 model per-
formance penalizes models for error at acute timescales, 
with lower correlation r and higher RMSE, while report-
ing higher model performance when error is not present 
at the acute timescale. Furthermore in simulations of 
estimated acute health associations, frequency band k = 6 
model performance is more strongly associated with 
relative mean bias and RMSE in estimated health asso-
ciations. In a study of 8 US cities, overall model perfor-
mance and frequency band k = 6 model performance can 
rate prediction models differently, emphasizing the need 
for a model performance tool that is best suited to the 
proposed analysis.

Fig. 6 Daily  PM2.5 concentrations and model predictions using FAQSD for three U.S. monitors. Results are shown for the overall time series and 
the decomposed time series at k = 1 (season), k = 2, and k = 6 (acute) frequency bands for the first 2 years for 3 example monitors: 060374008 (Los 
Angeles), 131210032 (Atlanta), 490353006 (Salt Lake City)
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Recent studies have evaluated or compared the perfor-
mance of air quality prediction models [11, 14, 32, 35]. 
Although many previous studies used primarily overall 
RMSE and correlation (r) for model performance [7, 11, 
14, 35], LVR can capture differences relevant for preci-
sion of estimated health associations [7]. Whether overall 
or frequency band model performance is used, examin-
ing multiple metrics such as r, RMSE, and LVR, can help 
elucidate different aspects of model performance. Fur-
ther, while we demonstrate frequency band model evalu-
ation using  PM2.5, our approach can be directly applied to 
evaluate prediction models for other pollutants examined 
in previous studies such as  NO2 [7, 11, 14, 35] and ozone 
[7, 35].

Effects of measurement error in time series studies 
of air pollution and health has been extensively exam-
ined using simulation studies [7, 8, 22, 27, 48]. Studies 
have examined spatial errors [48], error type [27], as 
well as effects of measurement error in multipollutant 
models [22] and multi-level models [7, 8]. Our work 
adds to this literature by simulating measurement error 

at varying timescales. This can better reflect practice 
where a prediction model may have errors in the sea-
sonal component, but not the acute component, or vice 
versa.

Previous epidemiologic studies have used timescale 
decomposition approaches to determine health asso-
ciations of air pollution at varying timescales [23, 46]. 
As in previous work [23], we decompose the time series 
into components corresponding to different timescales 
using a discrete Fourier transform [6, 40]. More recent 
epidemiologic studies utilized distributed lag models 
to estimate health associations at varying timescales 
[26, 47, 53, 54]. For analyses of health associations at 
different time scales, frequency band model perfor-
mance can be applied in the planning stage of an analy-
sis before health data are collected to evaluate whether 
a prediction model can be effectively used for the pro-
posed timescales of interest.

Aside from epidemiologic studies, there are analyses 
for which overall model performance will be more appro-
priate compared to frequency band model performance. 

Fig. 7 Comparing observed  PM2.5 data and FAQSD model predictions for 17 U.S. monitors. Results are shown using overall model performance 
(circles) and frequency band k = 6 model performance (triangles) for correlation r, RMSE, and LVR for 17 monitors. Points in red indicate example 
monitors of 060374008 (Los Angeles), 131210032 (Atlanta), and 490353006 (Salt Lake City)
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For analyses estimating burden of disease due to air 
pollution, representing the true concentrations, and 
not short or long-scale variability, is most important 
[24, 30]. Furthermore, both frequency band and overall 
model performance represent “operational evaluation” 
of the model biases [16] that describe deviations of the 
predictions from the truth. Depending on use, air qual-
ity prediction models should be evaluated with respect 
to multiple performance features, including operational 
evaluation, “diagnostic evaluation” of whether model 
errors are driven by inputs, and other features [16]. A 
recent study of CMAQ, along with other air quality mod-
els and statistical modeling approaches, did not find sub-
stantial differences in regional and national scale spatial 
 PM2.5 predictions from these models, but the authors 
note that the best model may vary with how the model 
will be used [32].

We incorporated classical measurement error in our 
simulation study. Additive classical measurement error 
biases estimated health associations [9, 56]. In practice, 
the error may be a more complex combination of both 
Berkson and classical error [7]. Additive error on the log 
scale, as we simulated in this work, can introduce bias in 
estimated health associations when the error type is clas-
sical or Berkson [27]. The goal of the present study was to 
demonstrate that error at varying timescales was better 
captured by frequency band model performance com-
pared to overall model performance, and not to examine 
measurement error types.

Frequency band model performance can be directly 
applied to time series studies of health associations, such 
as studies of acute health associations. Future work could 
extend our method to epidemiologic studies of long-
term exposure to air pollution and health. Extensions of 
frequency band model evaluation to long-term epide-
miologic studies will need to address several challenges. 
Assessing effects of long-term exposure on health relies 
on accurately representing spatial contrasts in concentra-
tions across different locations. The natural extension of 
frequency band model performance to a spatial setting 
would require applying a two-dimensional Fourier trans-
formation, which necessitates gridded data. Prediction 
model output is often available over spatial grids [18, 43], 
and a recent study estimated associations of  PM2.5 and 
birthweight at varying spatial scales using wavelet decom-
position [1]. Similarly, an assessment of unmeasured spa-
tial confounding at different scales compared Fourier and 
wavelet decompositions of exposure [31]. However, the 
spatial distribution of monitoring locations do not follow 
a regular grid, limiting the application of the frequency 
band approach to these contexts. Increasing the spatial 
density of the monitoring network, perhaps through the 
use of low-cost monitors, could mitigate this issue and 

allow for decomposition of the spatial scales of variation 
in monitoring data.

Conclusions
Frequency band model performance can be applied to 
predictions from air quality models to evaluate per-
formance at timescales of interest for epidemiologic 
studies. Compared to commonly-used overall model 
evaluation approaches, frequency band model evalua-
tion better reflects error at timescales of interest and is 
more strongly associated with bias in estimated health 
associations. Multiple metrics should be used to evalu-
ate the performance of air quality models. When the 
model predictions will be used for health analyses, it is 
important to evaluate the model performance at time-
scales that will impact the estimated health associations.
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