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Abstract 

Background: Indonesian peatlands have been drained for agricultural development for several decades. This devel‑
opment has made a major contribution to economic development. At the same time, peatland drainage is causing 
significant air pollution resulting from peatland fires. Peatland fires occur every year, even though their extent is 
much larger in dry (El Niño) years. We examine the health effects of long‑term exposure to fine particles  (PM2.5) from 
all types of peatland fires (including the burning of above and below ground biomass) in Sumatra and Kalimantan, 
where most peatland fires in Indonesia take place.

Methods: We derive  PM2.5 concentrations from satellite imagery calibrated and validated with Indonesian Gov‑
ernment data on air pollution, and link increases in these concentrations to peatland fires, as observed in satellite 
imagery. Subsequently, we apply available epidemiological studies to relate  PM2.5 exposure to a range of health 
outcomes. The model utilizes the age distribution and disease prevalence of the impacted population.

Results: We find that  PM2.5 air pollution from peatland fires, causes, on average, around 33,100 adults and 2900 
infants to die prematurely each year from air pollution. In addition, peatland fires cause on average around 4390 addi‑
tional hospitalizations related to respiratory diseases, 635,000 severe cases of asthma in children, and 8.9 million lost 
workdays. The majority of these impacts occur in Sumatra because of its much higher population density compared 
to Kalimantan. A main source of uncertainty is in the Concentration Response Functions (CRFs) that we use, with dif‑
ferent CRFs leading to annual premature adult mortality ranging from 19,900 to 64,800 deaths. Currently, the popula‑
tion of both regions is relatively young. With aging of the population over time, vulnerabilities to air pollution and 
health effects from peatland fires will increase.

Conclusions: Peatland fire health impacts provide a further argument to combat fires in peatlands, and gradually 
transition to peatland management models that do not require drainage and are therefore not prone to fire risks.
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Background
Indonesia faces peat and forest fires every year, with the 
most severe fires occurring in El Niño years, including 
2014, 2015 and 2019 [1]. During these events, smoke 
extends over large parts of Indonesia as well as Singapore 

and parts of Malaysia [2]. Much of the smoke is from 
peatland fires. Out of some 15 million hectares of peat 
in Indonesia, over half have been cleared and drained, 
in particular for plantation development (including oil 
palm and acacia for pulp and paper production) [3]. Once 
drained, peatlands are susceptible to fires, which can 
have a significant impact on ambient air quality. Drained, 
but still wet peat soils burn incompletely, at relatively 
low temperatures, which results in relatively high emis-
sions of a mix of pollutants including particulate matter, 
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carbon monoxide and Polycyclic Aromatic Compounds 
(PACs) [2]. The  PM2.5 (particulate matter with a diameter 
less than 2.5 μm) concentrations reached in Indonesia 
during fire events are exceptionally high. For example, 
in 2015 in Central Kalimantan province, 24-h mean con-
centrations above 2000 μg/m3 were recorded [4, 5], far 
above short–term exposure levels considered hazardous 
for human health by the World Health Organization, i.e., 
15 μg/m3 (24 hour mean) [6].

In the epimidiological literature, it has become com-
mon practice to use  PM2.5 as an indicator of ambient air 
quality, and causal associations between  PM2.5 exposure 
and health effects have been derived. The health effects of 
particulate air pollution include respiratory and cardio-
vascular morbidity (e.g., aggravation of asthma, respira-
tory symptoms and an increase in hospital admissions) 
and mortality from cardiovascular and respiratory dis-
eases as well as contribute to lung cancer [7]. Given 
that forest and peatland fires occur across Indonesia 
each year, and that smoke is retained in the ambient air 
for several months a year, forest and peatland fires not 
only lead to spikes in air pollution over the short-term, 
but also increase the population long-term exposure 
to  PM2.5, which is known to have a greater impact on 
mortality than short-term episodes [8, 9]. Several stud-
ies have analyzed health effects of Indonesian peat fires. 
For example, the short-term health effects of the 1997 
fires in Sumatra and Kalimantan were studied in [10] 
and the long-term health effects in Central Kalimantan 
province in [11]. Air quality and health impacts of vegeta-
tion and peat fires in Equatorial Asia during 2004–2015 
were studied in a comprehensive modelling study in [12]. 
However none of these studies analysed average long-
term health effects including both mortality and morbid-
ity effects, based on a comprehensive spatial database of 
 PM2.5 concentrations.

The objective of this paper is to analyse the long-term 
health impact of Indonesian peatland fires over the 5 year 
period extending between 2013 and 2017. We focus on 
the lowland provinces of Sumatra and Kalimantan which 
contain extensive peat areas and where people have the 
greatest exposures to the fires. We determine (i) the 
 PM2.5 ambient air pollution resulting from fires occur-
ring in peat; (ii) exposure of people to  PM2.5; and (iii) the 
resulting heath impacts from long-term exposure includ-
ing adult premature mortality, lost work days, cases of 
childhood asthma and chronic bronchitis, respiratory 
hospital admissions and infant mortality. Our paper 
focusses on Sumatra and Kalimantan where the majority 
of peatland fires take place and where the health effects 
of these fires are the highest. We include all types of fire 
in peatlands including fires affecting above ground veg-
etation and/or fires that occur in the form of burning and 

smouldering of below ground peat biomass. Our meth-
odology is novel in the sense that it focusses on peatland 
fires, and integrates satellite data on air quality, calibrated 
with data from local monitoring stations, with state-of-
the-art epidemiological modelling resulting in a high res-
olution (4.4 km) model for a large area (~ 1 million  km2). 
We also assess the implications of using different concen-
tration-response functions. We acknowledge that health 
effects of air pollution from peatland fires in Sumatra and 
Kalimantan occur in a broader area including Singapore 
and Malaysia (e.g. [13]), but we focus our study on Indo-
nesia, where the fires originate.

Methods
Case study area
We focus on the health effects of peatland fires in Suma-
tra and Kalimantan, and while peat and forest fires also 
occur in Papua and West Papua provinces, their much 
lower population will result in smaller impacts from 
the fires. Sumatra covers 48 million hectares (ha). With 
around 21% of the Indonesian population, it is the most 
populous island after Java. Sumatra has in total around 
6.4 million ha of peat according to government data [14], 
most of it located along the east coast of the island. Kali-
mantan is the Indonesian part of the island of Borneo 
and covers around 54 million ha. Based on government 
data of the Ministry of Agriculture [14], Kalimantan has 
approximately 4.9 million ha of peatland. Peat occurs in 
all provinces of Kalimantan: South, Central, West, East 
and North Kalimantan. Large scale deforestation and 
peat conversion started in the 1980s, initially in Sumatra. 
In recent years it has slowed down in response to govern-
ment policies, but peat conversion is still ongoing in par-
ticular for the cultivation of oil palm. The peat extent, and 
land cover in the peatlands of Sumatra and Kalimantan 
are shown in Fig. 1. Peatland fires typically occur in the 
dry season – starting in June and extending to December 
in some parts of Indonesia – with most fires taking place 
in the period from August to October.

Peatland fire occurrence
The burned areas in Sumatra and Kalimantan in each year 
from 2013 to 2017 were derived from satellite imagery 
collected through MODIS (MCD64A1 Collection 6). The 
MODIS MCD64A1 product uses a burned area map-
ping algorithm to detect changes in vegetation using the 
optical MODIS sensors [16], providing daily data with 
a 500 m grid resolution. Daily MODIS MCD64A1 data 
were downloaded as shapefiles, aggregated by year, and 
overlaid with the Government of Indonesia Ministry of 
Agriculture peat map from 2011 [14], in order to iden-
tify which fires took place in areas that have peat soils 
(as opposed to mineral soils). The number of fires varied 
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considerably between years, with over 100,000 individual 
fires recorded during the particularly dry year 2015.

In order to specify the type of land cover where the 
burned areas were identified, the results were subse-
quently overlaid with the land cover maps of the Ministry 
of Environment and Forestry from 2013 to 2017. These 
land cover maps show the spatial extent of 22 classes of 
land cover, which are aggregated here into five broad cat-
egories: 1) forests (intact and degraded peat swamp for-
est); 2) plantation (including oil palm, hevea rubber and 
coconut) and forest plantation; 3) degraded lands (bare 
ground, wet/dry shrubs, savannas, and grassy areas); 4) 
agricultural lands; and 5) other categories. For each of 
these classes, emission factors were calculated, in order 
to estimate which proportion of ambient  PM2.5 is derived 
from fires in peatland (discussed below). All spatial anal-
yses were conducted in the ArcMap 10.5 GIS package.

Ambient  PM2.5 from peatland fires
Estimating ambient  PM2.5 concentrations from satellites 
and simulation
Due to the limited availability of ground measurements 
of  PM2.5 in Indonesia, we use estimates of surface  PM2.5 
concentrations derived from a combination of satellite 
remote sensing and chemical transport model simula-
tion [17]. Monthly estimates of surface  PM2.5 concentra-
tions are derived over Sumatra and Kalimantan for 2013 
to 2017 at a spatial grid resolution of 4.4 km.  PM2.5 con-
centrations are estimated using satellite-derived Aerosol 
Optical Depth (AOD). AOD is a measure of the extinc-
tion (through scattering and absorption) of light by 

aerosols in a column of air from the Earth’s surface up 
to space. The AOD is used to represent the abundance 
of total aerosol particles in an atmospheric column [18]. 
The daily surface  PM2.5 concentrations from each data 
source are obtained by applying the daily simulated AOD 
to  PM2.5 ratios to the coincident daily calibrated AOD 
sources (see Supplementary Materials). Monthly means 
are calculated from the daily  PM2.5 values. The monthly 
mean  PM2.5 concentrations from each source are then 
combined based on their relative uncertainties with AER-
ONET following [17]. Details are presented in the Sup-
plementary Materials. Modelled  PM2.5 concentrations, 
from AOD, are calibrated with  PM2.5 and  PM10 data from 
Indonesia’s air quality monitoring network, that com-
prises 16 stations in Sumatra and 13 stations in Kalim-
antan, providing daily data from 2015 to 2017 (operated 
by the Meteorological, Climatological and Geophysical 
Agency and the Ministry of Environment and Forestry) 
[19, 20]. The majority (90%) of PM emitted from peatland 
fires is in the fine particulate fraction  (PM2.5) [2].

Identifying the contribution of peatland fires to ambient 
 PM2.5
The MODIS data show that fires almost exclusively take 
place in the period June to December. The Indonesian 
dry season varies somewhat between the southern part of 
Kalimantan and the northern part of Sumatra, but gen-
erally lasts from May to October. Hence, the peat burns 
in the dry season as well as in the beginning of the wet 
season, especially in El Nino years such as 2015 when 
major parts of Sumatra and Kalimantan were unusually 

Fig. 1 Land cover of peatlands in Sumatra (left) and Kalimantan (right) in 2015. Land cover is from the Ministry of Environment and Forestry [15] 
and peat extent is from the Ministry of Agriculture [14]
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dry from September to November [21]. Consequently, 
in Sumatra and Kalimantan, the months with high  PM2.5 
concentration in the peat areas (above 50 μg/m3) are all 
during the period June to December, with the highest 
exposures occurring during the months from August to 
October (August being the peak of the dry season). This 
is contrary to Java, which is much more industrialized 
and more densely populated, and where concentrations 
exceeding 50 μg/m3 occur throughout the year. Note that, 
due to prevailing wind directions during the dry season, 
the peatland fire smoke generally does not reach Java 
[22]. Hence, we assume that the increment in the  PM2.5 
concentration during the dry season, that we observe 
throughout Kalimantan and Sumatra, can be attributed 
to fires. To make sure all dry season peatland fires are 
included in the analysis, based on the rainfall distribu-
tion over the years of the analysis, the peat fire season 
is defined, for the purpose of this analysis, as the period 
between June and December. The period January to May 
is defined as the wet season, where we assume there are 
no peat fires. For each province, the mean concentration 
during the peat fire season and during the wet season is 
calculated. The difference between these two is assumed 
to represent the contribution of biomass fires to ambi-
ent  PM2.5. This difference is then multiplied by 7/12 to 
calculate the annual average increase in  PM2.5 concen-
tration, which we use to quantify the health impact of 
peatland fires. This is because we relate health effects 
to the mean annual increase in  PM2.5 as a consequence 
of peatland fires, in line with the epidemiological evi-
dence that the health effects of long-term exposure 
are much more important than the impacts from peak 
exposure [8, 9]. The outcome of the analysis is not sensi-
tive to the assumed length of the peat fire season. If it is 
assumed that the peat fire season is 6 months, for exam-
ple, a higher monthly average increase during this season 
would be noticed, but this would be multiplied with 6/12, 
resulting in approximately the same annual increase in 
ambient  PM2.5 due to peatland fires.

Next, we analyze which part of the incremental  PM2.5 
can be attributed to fires in peatlands, as opposed to 
 PM2.5 originating from fires occurring in ecosystems on 
mineral soil (for instance from forest fires or the burn-
ing of biomass in crop fields). For each island, we assume 
that the increase in the concentration of  PM2.5 from peat-
land fires is proportional to the share of  PM2.5 emitted in 
peatland fires as opposed to  PM2.5 emitted from fires on 
mineral soils. We estimate this proportion based on the 
number of hectares burned in peat versus mineral soil, 
taking into consideration differences between years, type 
of ecosystem and emission factors (EF). We acknowledge 
that the formation of secondary organic aerosols (SOA) 
may differ between peatland and forest fires, but we have 

not taken this difference into consideration in the analy-
sis. We comment on the consequences of our simplifi-
cation in the Discussion section. The burned areas are 
analyzed with MODIS images. The location of the fires is 
compared to the land cover map of MOEF [23], and the 
national peat map [14]. The amount of biomass burned 
(above ground biomass and, in peat soil, soil biomass) per 
hectare was analysed for various ecosystem types (for-
ests, plantations, shrubland, grassland and cropland). It 
was assumed that on average peat soils burn to a depth of 
33 cm, and that per hectare of burned peat 505 t of under-
ground biomass is lost [23–25]. The resulting EF for peat 
is 4.6 t  PM2.5 per hectare burned [26]. For above ground 
biomass, the EF ranges from 0.03 t  PM2.5 per hectare for 
fires in agricultural land to 3.5 t  PM2.5 per hectare for 
fires in forests [27, 28]). It is assumed that these numbers 
apply to both ecosystems on peat and on mineral soil. For 
peatland we add the  PM2.5 emissions from peat burning 
(below ground) to the emissions from above ground bio-
mass burning to calcuate the overall EF. Supplementary 
Materials (SM) Table A2 in the Annex provides detailed 
calculations.

Finally, for each province, month and year the popu-
lation weighted increase in  PM2.5 concentration due to 
peatland fires was calculated. This is important since 
the populations are not homogeneously distributed 
across provinces, and, consequently, the spatially aver-
age concentrations do not correlate perfectly with the 
true population exposure. We used population data from 
the NASA Socioeconomic Data and Applications Center 
(SEDAC), file: Gridded Population of the World 2015.1 
This dataset contains population data at 1 km grid cell 
resolution, world-wide. In our analysis, for every grid 
cell, the increase in  PM2.5 concentration in the grid cell 
is multiplied with the population in the grid cell. Next, 
these numbers are added for all grid cells in a province, 
and the resulting number is divided by the number of 
people in the province. This results in the population-
weighted average increase in  PM2.5 concentration due to 
peatland fires by province.

Health effects from peatland fires
We follow a health impact assessment approach to cal-
culate the health effects of peatland fires from long-
term exposure (1-year or longer) to  PM2.5 ambient air 
concentrations. We did not specifically calculate the 
health impacts attributable to episodic events of air pol-
lution, although these short-term effects are implic-
itly included in the epidemiological assessment of the 

1 https:// sedac. ciesin. colum bia. edu/ data/ set/ gpw- v4- popul ation- count- rev11

https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-rev11
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average long-term health consequences. When analyzing 
the impact of  PM2.5 on human health, four main inputs 
are used to quantify effects on people: (1) current and 
counterfactual  PM2.5 concentrations to determine the 
change in  PM2.5; (2) size and age-composition of popula-
tion groups exposed to current levels of air pollution; (3) 
baseline incidence of mortality and morbidity outcomes; 
and (4) risk functions relating a change in concentration 
to a change in the health outcome of interest. We analyze 
the annual average health effects of peatland fires, relat-
ing annual average health effects to annual average  PM2.5 
concentrations (in line with, e.g., [8, 9, 29, 30]. In reality, 
variation between years may occur since peak concentra-
tions in  PM2.5 that exacerbate health effects in the short 
term occur more frequently in dry years with more peat-
land fires. To capture the variability of the impact results, 
we also conduct a sensitivity analysis to the key input 
factors in the analysis, as described below. The health 
impact is calculated as follows:

Current and counterfactual  PM2.5 concentrations
The health impacts of air pollution related to peatland 
fires are compared to the health effects of air pollu-
tion that would occur without peatland fires (in which 
case there would still be a certain level of air pollution, 
e.g. from industry or traffic). This background air pollu-
tion concentration is referred to as the “counterfactual”, 
the ambient air concentration that would be expected in 
the absence of peatland fires, and the dry season excess 
exposure above the counterfactual is used to evaluate 
the excess health impact attributed to peatland fires. 
In the assessment of the long-term adult mortality, the 
incremental  PM2.5 from peatland fires is defined as the 
5-year average of the population-weighted, province-
specific concentrations from June to December (fire 
season) minus the concentrations from January to May 
(the counterfactual). On the other hand, infant mortality 
and morbidity impacts are calculated based on the mean 
 PM2.5 incremental exposure above the counterfactual in a 
given year.

Size and age composition of population groups exposed 
to current levels of  PM2.5
For each province in Sumatra and Kalimantan, annual 
population statistics, including size and age-group strati-
fication, were calculated according to the Indonesian 
Statistics Agency and Bappenas population scenario 
[31]. In 2013, the population of Sumatra and Kaliman-
tan was 53.5 and 15.0 million persons, with an average 
annual population growth rate between 2013 and 2017 

Health Impact = Exposed population × Background rate of mortality or morbility × Health risk function, CRF × Change in pollution

equal to 1.2 and 1.5% for each region, respectively. The 
average population composition over the 5-year period 
by broad age-group including infants, children (ages 1 to 
14 years), young adults (15 to 30 years) and adults older 
than 30 years was 2.2, 27.7, 26.2, and 43.9%. Age structure 
was similar for both islands.

Baseline rates of mortality
Next, we estimate the underlying rate of the health effect 
(e.g., the baseline natural mortality rate, excluding acci-
dental deaths, in the population in terms of deaths per 
thousand people). We found two sources for these data, 
so a sensitivity analysis was conducted. For the base case, 
the data used were taken from the Global Health Esti-
mates (GHE) database by WHO [32], which provides 
all-cause and cause-specific mortality estimates based 
on official Indonesian national statistics as of year 2016 
(the last year available for such data). For year 2016, 
the GHE indicates 12.56 natural deaths per 1000 adults 

aged 30 and older, and 9.53 deaths for non-communi-
cable diseases and lower respiratory illness combined 
(NCD + LRI) per 1000 adults 25 and older in Indonesia. 
These baseline mortality rates have been applied, with-
out further adjustment, to population estimates from 
the Bappenas population scenario for each of the 5 years 
between 2013 and 2017 to calculate the annual baseline 
mortality [31]. For infant (< 1 year) mortality, modeled 
data were obtained from the United Nations Inter-agency 
Group for Child Mortality Estimation [33]. The annual 
infant mortality rate in Indonesia over the period 2013 to 
2017 was: 25.25, 24.34, 23.46, 22.62, and 21.86 deaths per 
1000 live births. These data were used in the calculation 
of the annual infant mortality.

For the sensitivity calculations, we used modeled 
demographic data from the Global Health Data exchange 
(GHDx) database of the Institute for Health Metrics and 
Evaluation.2 At the national-level, IHME estimates for 
year 2016 are 11.09 natural deaths per 1000 adults over 
30 years, and 8.42 NCD + LRI deaths per 1000 adults 
aged 25 and over. Infant mortality figures are fairly close 
to the values by the UN IGME [33]. The IHME database 
also provides modeled mortality rates by province (e.g., 
Aceh, West Kalimantan, etc.). For Sumatra and Kalim-
antan islands, respectively, the mortality rates are 5.50 
and 6.41 natural deaths per 1000 population (compared 

2 Information is available online: http:// ghdx. healt hdata. org/ gbd- resul ts- tool

http://ghdx.healthdata.org/gbd-results-tool
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to 6.71 per 1000 at the national-level from WHO’s GHE 
database), 10.05 and 11.40 natural deaths per 1000 adults 
over 30 years, and 7.56 and 8.49 NCD + LRI deaths per 
1000 adults 25 and over.

Concentration‑response functions
The fourth input is based on statistical relationships 
from the epidemiological literature that relate ambient 
concentrations of  PM2.5 to mortality and other health 
effects. Over the past decades, epidemiological studies 
on biomass-derived PM have investigated the mortality 
and morbidity effects of wildfires on respiratory and car-
diovascular outcomes [34–36];;. While the toxicological 
evidence is suggestive that wildfire PM is more toxic than 
urban PM, we have adopted the conservative assumption 
that all particles are equitoxic, and have applied in our 
analysis the most robust CRFs recently derived on the 
basis of all PM sources. The accuracy of the risk functions 
depends in part on: (a) the data quality and methodology 
of the original studies; (b) the extent to which the con-
centration-response functions (CRF) include the range of 
concentrations for which they are being applied, and (c) 
the applicability of these functions to populations besides 
those from which they were originally estimated.

For the base-case health assessment of adult mortality 
from exposure to ambient  PM2.5 resulting from peatland 
fires, a meta-analysis was used [30]. This study included 
53 cohort studies, 39 studies from North America, eight 
from Europe, and six from Asia. The mean concentra-
tion of  PM2.5 across the studies was 15.7 μg/m3, with 
higher concentrations observed in the Asian studies with 
a mean of 30.5 μg/m3. The authors’ analysis indicated 
robust association between  PM2.5 and premature mor-
tality. At the mean concentration of 15.7 μg/m3, a 10 μg/
m3 increase in  PM2.5 was associated with a 10.3% (95% 
confidence interval (CI) = 9.7, 11.1%) increase in adult 
premature mortality. This risk function was used for the 
base case estimates since it included the greatest number 
of studies in total, with a few from Asia. The referenced 
health risk was applied to the mortality rate in the popu-
lation over 30 years old [30].

A sensitivity analysis was performed by using three 
alternative concentration-response functions. The first 
is an estimate of adult mortality; a meta-analysis of 41 
cohort studies from around the world that was con-
ducted while allowing for flexibility in determining the 
shape of the CRF [9]. The second study [37], utilized 
census data on 2.4 million Canadian adults to examine 
non-accidental and cause-specific mortality between 
2001 and 2011. Of particular interest, the study com-
pared impacts of using three different average exposure 
periods (1, 3, and 8 years), so it is relevant to the five-
year average of concentrations due to peatland fires. 

The health risk from [37] was applied to the mortality 
rate in the population over 30 years old. The third study 
used in the sensitivity analysis is based on the recom-
mendations from WHO’s HRAPIE revie w[7], which 
was based primarily on an earlier meta-analysis [8]. 
The estimated risk for non-accidental mortality (for the 
population 30+) was based on eleven studies available 
at the time. The resulting risk was 6.2% (95% CI = 4, 
8.2%) per 10 μg/m3 increment in  PM2.5 concentra-
tion. As shown in Annex 2, the CRF that we use in our 
base case [30], lies in between those of the three other 
studies.

Infant mortality (age < 1 year) was assessed based on 
[38]. This study considered almost 1 million births across 
sub-Saharan Africa using the Demographic and Health 
Surveys, a set of nationally representative samples from 
30 sub-Saharan countries.  PM2.5 was estimated at the 
residential location using remote sensing satellite data 
and assigned to each birth using exposures 9 months 
before and 12 months after birth. The study reported 
that a 10 μg/m3 change in  PM2.5 was associated with 9.2% 
(95% CI = 4, 14%) increase in infant mortality. Previous 
studies in Mexico City [39, 40] generated risk estimates 
of 8.8 and 6.9%, respectively, for a 10 μg/m3 change in 
 PM2.5. Finally, another large meta-analysis [41], included 
over a half million births from 69 nationally representa-
tive Demographic and Health Surveys conducted in 43 
countries throughout Africa, the Middle East, Asia, East-
ern Europe and the Caribbean. The study suggests an 
increase in infant mortality of 8.1% (95% CI = 2.5, 14.3%) 
for a 10 μg/m3 change in fire-related  PM2.5, which is quite 
similar to the result of [38].

For morbidity, based on available data, the follow-
ing were quantified: severe asthma attacks in children, 
asthma-related hospital admissions (all ages), all res-
piratory hospital admissions (all ages), and lost work 
days for the current labor force. Thus, outcomes such 
as cardiovascular morbidity (heart attacks, hospital 
admissions), respiratory symptoms leading to restricted 
activity and adverse birth outcomes (besides infant 
mortality) were not quantified because of uncertain-
ties regarding baseline levels in Sumatra and Kaliman-
tan. Most of the CRFs were based on WHO’s HRAPIE 
[7], except one study [42], which was used for asthma-
related hospital admissions. Baseline prevalence rates 
were determined as follows: severe child asthma attacks 
were assumed to be 1.24 cases/year per child, assum-
ing 62 asthma attacks a year, of which 2% are severe 
([7, 43];, respiratory hospital admissions were assumed 
as 397 per 100,000 people [44],and lost work days were 
7 days/worker (UN ILO). For asthma-related hospital 
admissions, we were unable to find baseline evidence 
for Indonesia, instead, we used evidence from Europe, 
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and assumed that 11% of all respiratory hospital admis-
sions are asthma-related.

Results
Peatland fire occurrence
Between 2013 and 2017, peatland fires occurred every 
year in Sumatra and Kalimantan (Table  1), with the 
largest burned areas detected in 2014 (0.72 million ha) 
and 2015 (0.42 million ha). The three provinces with 
the largest burned areas were: Riau, Central Kaliman-
tan and South Sumatra. On average, over the period 
2013–2017, 2.3% of all peatlands in Sumatra and 3.0% 
of all peatlands in Kalimantan burned each year. How-
ever, there were large variations between years. For 
instance, in 2014, 5.4% of all peatlands burned in Suma-
tra, and 7.8% in Kalimantan. Within the peatlands, 
most fires occurred in degraded lands (bare ground, 
wet and dry shrub, savanna and grassland), totaling 52 
to 80% of total burned areas annually, followed by plan-
tations (6 to 37%), agricultural lands (3 to 13%) and for-
ests (including primary and degraded forest) (4 to 10%; 
see Annex 1, Table A1, for details). The largest fires in 
degraded lands occurred in 2014 and 2015 when 0.46 
million ha and 0.34 million ha of degraded peatlands 
were burned, respectively.

Ambient  PM2.5 from peatland fires
The monthly satellite-derived (SAT) surface  PM2.5 con-
centration estimates for Indonesia are compared against 
monthly ground monitor data (Insitu) in Table  2. The 
comparison is shown for ‘All Sites’ (direct  PM2.5 sites and 
the sites where  PM2.5 is calculated from  PM10), and for 
direct  PM2.5 sites (Direct  PM2.5 Sites). The ground meas-
urements only cover the period of 2014 to 2017. The 
majority of the ground-based observations over Indone-
sia provided  PM10 concentrations rather than  PM2.5. The 
 PM10 measurements were used to estimate  PM2.5, based 
on sites where there were coincident  PM2.5 and  PM10 val-
ues. The column ‘All Sites’ in Table 2 contains the analysis 
for all sites (the sites measuring directly  PM2.5 values as 

well as the sites where  PM2.5 was estimated from  PM10), 
while the column ‘Direct  PM2.5 Sites’ is referring to the 
analysis for only sites which directly measured  PM2.5.

There is a high degree of consistency (R2 = 0.77 for 
all sites; R2 = 0.90 for direct  PM2.5 sites) between the 
 PM2.5 estimates and the independent ground moni-
tor data, with slopes of 0.78 for all sites and 1.07 for 
direct  PM2.5 sites and no significant differences in 
performance between Kalimantan and Sumatra. The 
mean satellite-derived  PM2.5 over the entire 2014–2017 
period (33.81 μg/m3 for all sites; 33.53 μg/m3 for direct 
 PM2.5 sites) demonstrate a good agreement with the 
mean ground monitor  PM2.5 (28.39 μg/m3 for all sites; 
24.39 μg/m3 for direct  PM2.5 sites). This comparison 
with ground monitor data indicates that the satellite-
derived  PM2.5 estimates are accurately capturing the 
high  PM2.5 concentrations associated with biomass 
burning events, and can be used with a high degree of 
confidence for estimating the impacts of  PM2.5 due to 
biomass burning over Indonesia.

Figure  2 (A) showsthe 2013–2017 average  PM2.5 con-
centrations for the core fire season (months of August 
to October) and (B) all other months in Sumatra and 
Kalimantan. As shown in Fig. 2 (A), hotspots are appar-
ent predominantly in the fire season, in particular in the 
southeastern part of Sumatra (Riau, Jambi and South 
Sumatra provinces) and in the provinces of Central and 
West Kalimantan

Table 1 Peatland fires in Sumatra and Kalimantan

Fire occurrence 2012 2013 2014 2015 2016 2017

Sumatra total (1000 ha) 364 274 643 630 96 23
 ‑ of which: peatland fires 39% 64% 53% 28% 50% 28%

 ‑ of which: fires on mineral land 61% 36% 47% 72% 50% 72%

Kalimantan total (1000 ha) 342 105 984 1008 46 25
 ‑ of which: peatland fires 55% 45% 39% 24% 16% 21%

 ‑ of which: fires on mineral land 45% 55% 61% 76% 84% 79%

Table 2 Comparison of monthly collocated satellite‑derived 
 PM2.5 (SAT  PM2.5) and ground monitor  PM2.5 (Insitu  PM2.5) over 
Indonesia for 2014 to 2017)

All Sites Direct  PM2.5 Sites

R2 0.77 0.90

Slope, intercept 0.78, 11.29 1.07, 6.90

Mean SAT  PM2.5 (μg/m3) 33.81 33.53

Mean Insitu  PM2.5 (μg/m3) 28.39 24.39

No. of observations 364 71



Page 8 of 16Hein et al. Environmental Health           (2022) 21:62 

Figure 3 shows how  PM2.5 concentrations vary across 
the year, indicating both the 5-year average and the 
concentrations for a dry (2015) and wet (2016) year. 
During the fire season (June to December), average 
 PM2.5 concentrations in Sumatra and Kalimantan reach 
almost 60 μg/m3 (with a maximum monthly average 
 PM2.5 concentration of 143 μg/m3 in October 2015), 
while for the non-fire season months, average concen-
trations are around 20 μg/m3. Note that these maps 
show PM concentrations as determined by all emis-
sion sources including fires on peat and mineral land, 
industry, traffic, etc. The difference between the aver-
age  PM2.5 concentration during the 5 months wet sea-
son (the ‘counterfactual’) and the 7 months dry season 
is assumed to be the contribution of biomass burning 
comprising both fires in areas with a mineral soil and in 
areas with a peat soil.

Supplementary Materials Table A5 presents the con-
tribution of peatland fires to the overall  PM2.5 emission 

from biomass burning. On average, over 5 years, this 
contribution is 76% in Kalimantan and 86% in Suma-
tra. Subsequently, the population-weighted exposure to 
 PM2.5 from peatland fires by province and by year are 
calculated. This is shown in Table  3. The table shows 
the average  PM2.5 exposure of people living in each 
province.

Health effects from peatland fires
Health impacts of fires in Indonesian peatlands, in 
Sumatra and Kalimantan, are shown in Fig. 4. Using the 
CRF curve of [30], each year around 33,100 adults (95% 
CI = 31,200, 35,700) and around 2900 infants die prema-
turely because of air pollution resulting from peatland 
fires. This mortality rate corresponds to around 10% of 
total adult mortality (over 30 years old) in Sumatra and 
Kalimantan and 7.7% of the annual infant mortality. For 
a different perspective, the loss of life expectancy due 
to peatland fires at birth per inhabitant in Sumatra and 

Fig. 2 The 2013–2017 average  PM2.5 concentrations for (A) August‑Oct (core fire season) and (B) all other months for Sumatra and Kalimantan
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Kalimantan is, respectively, 0.9 and 1.2 years (life expec-
tancy at birth is around 71 years). These estimates were 
calculated using a life table analysis [45], considering 
province-specific data on the population and mortality 
distribution by age group (sourced from IHME’s GHDx 
database). In addition to premature deaths, we calculate 

the morbidity incidences related to smoke inhalation. On 
average, for each year between 2013 and 2017, our analy-
sis has identified an additional 4390 respiratory hospital 
admissions, 635 thousand severe asthma symptom days 
among asthmatic children, and 8.9 million workdays lost 
in the working population.

Fig. 3 Monthly averaged population‑weighted  PM2.5 concentrations (μg/m3) over a five‑year period from 2013 to 2017 across the islands of 
Sumatra and Kalimantan

Table 3 Mean annual increase in  PM2.5 concentration (μg/m3) due to peatland fires, by year and province

Province 2013
(typical rainfall)

2014
(dry year)

2015
(dry year)

2016
(wet year)

2017
(wet year)

2013–17

Sumatra 5.4 7.8 16.8 0.9 2.2 6.6

 Aceh 1.2 0.0 3.2 0.0 0.8 1.0

 Jambi 10.4 19.5 34.5 1.9 4.3 14.0

 Riau 12.5 20.5 26.1 0.0 1.2 11.9

 South Sumatra 10.8 19.0 33.4 3.5 5.1 14.3

 North Sumatra 0.8 0.0 8.3 0.0 0.0 1.8

 Bangka Belitung 6.5 8.4 17.4 4.6 3.4 8.0

 Riau Islands 7.6 7.3 13.3 4.1 1.9 6.8

 Lampung 5.8 4.2 8.5 0.0 4.3 4.5

 West Sumatra 0.0 1.8 18.5 0.0 0.6 4.2

 Bengkulu 5.6 7.1 16.5 0.0 3.0 6.4

Kalimantan 4.1 13.3 21.3 0.6 0.9 8.0

 West Kalimantan 4.6 12.9 22.8 0.6 0.5 8.2

 South Kalimantan 3.2 10.6 18.2 0.7 1.4 6.8

 Central Kalimantan 4.2 25.1 33.1 0.0 1.2 12.6

 East + North Kalimantan 4.1 9.4 15.3 0.8 0.9 6.0
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Discussion
Uncertainties
Our study is the most comprehensive analysis of the 
long-term health effects of peatland fires in Indonesia 
carried out to date, in terms of the spatial and temporal 
cover and the application of CRFs to analyse the adult 
long-term mortality, infant deaths, and the additional 
morbidity effects associated with smoke inhalation 
in the exposed population. This improved knowledge 
leads to a better understanding of the negative health 
effects linked to peat drainage. Nevertheless, the anal-
ysis is subject to several important sources of uncer-
tainty, related to both data and the models that we use. 
In terms of data, the main uncertainties pertain to: 
(i) the areas covered by peatlands; (ii) the occurrence 
of fires; and (iii) the estimation of  PM2.5. In the last 
20 years, 5 studies have published estimates of peatland 
occurrence in Sumatra and Kalimantan (for an over-
view, see [46]). For Sumatra, these estimates range from 
5.6 million ha [47], to 9.6 million ha [48]. For Kalim-
antan, estimates range from 4.8 million ha [14] to 6.7 
million ha [47]. In this study, the numbers of [14], are 
used, in line with the numbers formally adopted by the 
Government of Indonesia. Based on these numbers, 
the contribution of peatland fires to overall  PM2.5 emit-
ted from fires is estimated at 86% in Sumatra (average 
over 2013–217, range: 75% in 2017 to 94% in 2013) and 
76% in Kalimantan (range: 62% in 2016 to 88% in 2013). 
This result is comparable to Kiely et al. [49], who esti-
mate that, across Indonesia, peatland fires contributed 
71% of total  PM2.5 emissions from fires in Indonesia 
during September–October 2015. Our study focusses 

on two islands with extensive peat areas, which can 
explain why we find somewhat higher values. However, 
the uncertainty in peat area means for our study that 
there is uncertainty in the attribution of  PM2.5 to peat-
land fires (as opposed to fires in mineral soil). Since the 
numbers on peat extent that we use are relatively low 
[14], we may underestimate the contribution of peat-
land fires to overall increases in  PM2.5, and thereby 
underestimate the associated health effects.

Next, there is uncertainty regarding the occurrence of 
fires as measured with MODIS. The MODIS MCD64A1 
product presents an estimate of the area burned in a 
given time period, however it is likely to underreport 
the actual burned area. In particular, small, burned 
areas (less than 100 ha) and burned areas in croplands 
and degraded grasslands are not all registered [16]. The 
estimates of burned areas presented in this report are 
subject to these same uncertainties. As for the measure-
ment of  PM2.5, we are combining ground observations of 
 PM2.5 from the Government of Indonesia with models of 
ambient  PM2.5 based on remote sensing observations. As 
explained in Section  3.2, our model has a good fit with 
the observed data, having an  R2 of 0.90 with  PM2.5 meas-
urement stations and an  R2 = 0.77 for all sites. However, 
we apply a simplification in the allocation of  PM2.5 emis-
sions to peatland fire versus forest fires on mineral land. 
In particular, we do not consider SOA formation in dis-
tinguishing the ratio  PM2.5 from peatland fires versus for-
est fires. The incomplete burning of peat soils means that 
SOA formation may, on a per hectare basis, be higher in 
peatlands compared to forests on mineral land (e.g. [49]). 
Furtheromore, the EF we use for peat combustion (9.04 g/

Fig. 4 Health impacts of Indonesian peatland fires, based on a CRF curve of [30]
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kg) is conservative. Other studies which have done field 
measurements have found up to 29.6 g/kg [50] and 22.3 g/
kg [51]. Both aspects mean that we may underestimate 
the amount of ambient  PM2.5 resulting from peatland 
fires (and overestimate the  PM2.5 resulting from for-
est fires on mineral land). This means we may therefore 
underestimate the health effects of peatland fires.

In terms of health impact models, a key source of 
uncertainty lies in the selection of the concentration 
response functions that we use to assess health effects, 
and in our underlying input data assumptions. A first 
important assumption that we make is that the exposure 
to  PM2.5, as measured over the period 2013–2017, is rep-
resentative for the long-term exposure in Sumatra and 
Kalimantan. The period we study has two dry years (2014, 
2015) two wet years (2016, 2017) and a year with average 
rainfall (2013). This can be considered representative for 
long-term rainfall conditions. Another key assumption 
is that  PM2.5 emissions from other sources, in particular 
transportation, industry, energy supply and households, 
are similar in magnitude during the wet and dry sea-
son, so that the total increase in the dry season can be 
attributed to fires. There is no reason to assume any of 
these sources emits significantly more  PM2.5 in the dry 
season compared to the wet season, however we cannot 
exclude that this may be the case. Furthermore, it may be 
that different rainfall patterns in the dry and wet season 
influence the rate at which  PM2.5 is removed from the 
atmosphere affecting our assumption that the difference 
between the dry and the wet season  PM2.5 concentrations 
can be solely attributed to biomass burning. The  PM2.5 
data for the year 2016, the year with the fewest peatland 
fires, show that the associated error is likely to be small 
(see Fig. 3). For 2016, the average Jan to May = 16.75 μg/
m3, average Jan to Jul = 16.36 μg/m3, and average Jan to 
Dec = 16.66 μg/m3 – in other words, the year with the 
least peatland fires experienced fairly constant average 
 PM2.5 concentrations throughout the year. An additional, 
important assumption is that a peak in  PM2.5 concentra-
tion during the dry season can be averaged out over the 
year in order to assess health impacts; in other words that 
the health effects of a seasonal peak in  PM2.5 are similar 
to those of a (lower) annual average increase in  PM2.5. 

Since we are analyzing the long-term impacts of  PM2.5 
exposure, we believe the resulting potential errror to be 
small, and we note that this assumption is also made in 
various other studies analyzing the health impacts of for-
est fires, e.g. [42, 52]. Finally, we assume that the human 
toxicity of  PM2.5 derived from peatland fires is in line with 
the average toxicity of  PM2.5 (as related to health effects 
in concentration-response curves world-wide). However, 
various studies indicate that  PM2.5 from biomass burn-
ing is relatively toxic, compared to other sources of  PM2.5 
such as road dust or aerosols from sea salt spray [53, 54].

Furthermore, there is uncertainty related to applying 
concentration-response curves to Indonesia, in par-
ticular because many of the underlying data are from 
Western Europe and the US, even though the study that 
we used for our base case estimate, [30], also includes 
data from China. This is reflected in the spread of the 
values that we present in Table  4. The accuracy of the 
application depends on the similarity of factors such as: 
(a) the chemical composition of the  PM2.5; (b) the activ-
ity patterns and time spent outdoors; (c) underlying 
population disease profile and health status, including 
availability and utilization of health care services; (d) 
socioeconomic status; (e) age distribution, and (f ) expo-
sure to other pollutants, both outdoors and indoors. Of 
particular relevance is that Indonesia’s population is 
much younger and hospital admissions are much lower 
compared to the US and Western Europe. In addition, 
Indonesia and many other low- and middle-income 
countries have a different proportion of communicable 
diseases (around 16% of natural deaths) than the U.S. 
and Western Europe (around 5–6%). To explore the 
implications of using different CRFs, Table 4 below pre-
sents a sensitivity analysis, using three different choices 
for the CRF, with further details provided in Table A1.5 
in the SM.

Finally, we need to stress that a limitation of our anal-
ysis is that we only examine premature mortality and 
morbidity effects of peatlands fires in Sumatra and Kali-
mantan. In years with severe fires, such as 2014 and 2015, 
smoke from peatland fires is spread over considerably 
larger areas, including other islands of Indonesia, Malay-
sia, Singapore and even parts of Thailand. Even though 

Table 4 Sensitivity analysis, adult premature deaths (mean air concentrations 2013–17)

Numbers may not add up due to rounding

Location Vodonos (low/high = 95%CI) HRAPIE Crouse Burnett

Central Low High Central Central Central

Sumatra 23,850 22,450 25,730 14,310 46,720 13,810

Kalimantan 9270 8730 10,000 5570 18,110 6050

Total 33,130 31,180 35,720 19,870 64,830 19,870
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the health effects are concentrated in the two islands that 
we examine, mortality and morbidity effects do occur 
in other areas, both as a consequence of peatland fires 
in Sumatra and Kalimantan and due to peatland fires in 
other areas (e.g. Papua and Sulawesi) [55–57]. Conse-
quently, our numbers are an underestimate of the overall 
health effects of peatland fires in Indonesia.

Our results can be compared to two other stud-
ies that assessed the health effects of peatland fires in 
Sumatra and Kalimantan. Crippa et  al. [56] find that 
short-term exposure to air pollution resulting from 
peat fires in 2015 may have caused 11,880 (6153–
17,270) excess mortalities across SE Asia and state that 
“the estimated deaths represent only a fraction of the 
overall premature fatalities due to long-term exposure 
to unhealthy air quality conditions”. They estimate that 
~ 75,600 excess premature mortality would occur each 
year if the population received long-term exposure to 
the pollutant concentrations experienced in fall 2015 
[56]. Kiely et  al. (2020) [12] analysed excess mortality 
from health effects related to peat fires in six dry years 
with extensive peat fires in the period 2004 to 2015. 
For 2015, they found that exposure to PM resulted in 
44,040 excess deaths in SE Asia, of which 61% (about 
27,000 deaths) occurred in Sumatra and Kalimantan 
[12]. Our estimate for 2015 is 45,300 premature deaths 
across Sumatra and Kalimantan due to peatland fires, 
a value that is halfway between the estimate of the 
two studies [12, 55]. A main factor driving the differ-
ences between the studies is the counterfactual, i.e. the 
amount of  PM2.5 that is added to the background  PM2.5 
concentration due to peatland fires (for instance, [12] 
assumed this to be 25 μg/m3, whereas our counterfac-
tual is 18 μg/m3), but also differences in input data such 
as share of total  PM2.5 emissions from peatland com-
pared to other fires, population exposure-level, and 
demographic data play a role.

Policy implications
The use and management of Indonesian peatlands is 
challenging. Peatlands cover large areas (between 15 
and 20 million ha), often located in remote areas, in 
particular in Sumatra, Kalimantan and Papua. These 
peatlands are an important economic asset, given that 
they can be used for agriculture [47, 58, 59]. At present, 
only small areas of peatlands are being used for crops 
that do not require drainage, such as sago. The drain-
age of peatlands for other crops brings significant nega-
tive externalities. In addition to adverse health effects 
from peatland fires, these include  CO2 emissions, loss 
of biodiversity, and soil subsidence that will, over time, 
increase flood risks across Indonesian lowlands [60–
62]. Importantly, fire occurrence in 2016 and 2017 was 

markedly lower, which may be related to higher rain-
fall in 2016 and 2017, compared to 2014 and 2015. Fire 
occurrence increased again in 2019 [63].

We show that the health effects of draining and con-
verting peatlands for agricultural development are 
substantial. Annual premature adult mortality due 
to peatland fires ranges from 19,900 to 64,800 cases, 
depending upon the concentration-response curve 
used (Table 4). Clearly, also the lower end of the model 
results indicates a substantial health effect attributable 
to peatland fires (6% of adult natural mortality). Fur-
thermore, peatland fires put additional stress on the 
country’s health care system, and result in lost workdays 
due to air pollution related sicknesses. Both aspects 
are economic costs for Indonesia. There have also been 
reports that reduced lung functioning due to air pollu-
tion increases population vulnerability to COVID-19 
[64]. The relation between COVID-19 and air pollution 
from peat and forest fires remains to be further studied, 
but this may provide further policy incentive to address 
peatland fires.

The Indonesian government has already banned 
farmers from dry-season crop residue burning, and 
such efforts are very important in mitigating health 
risks. In addition, health risks should be considered 
in land use planning and decision making on peatland 
uses. It is relevant to consider in which land use types 
the fires predominantly take place. Our data show that 
the least fire-prone areas are forests, which under nat-
ural conditions burn very seldomly (0.1% of the forest 
land burns each year, an average over the period 2013–
2017, in Sumatra and Kalimantan; part of this land is 
burned deliberately to clear space for agriculture). On 
the other end of the spectrum, each year some 4% of 
agricultural lands and some 6% of grasslands burn. For-
est plantations and perennial (plantation) crops take 
an intermediate position; some 2% is burned each year 
on average across Sumatra and Kalimantan. Around 
61% of  PM2.5 emissions related to biomass are from 
grasslands and shrublands, and 23% from plantations 
(annual croplands cover a much smaller area and con-
tribute only 7%).

To reduce fire risks and associated health effects, a 
first priority is the rehabilitation of degraded grass-
lands and shrublands in peat, involving rewetting, 
revegetating, and controlling fire, cf. [65]. Second, in 
the near to medium term, there is a need to phase out 
oil palm, acacia, coconut and other crops on peat that 
require drainage, and replace these by other peatland 
uses that do not require drainage. It is noted that low 
water tables in plantations extend to adjacent areas 
[66]; drainage for plantations desiccates adjacent areas 
up to several km from the plantation boundary. Hence, 
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drainage in plantations also increases fire risks in 
other land use types in peat including in forests and 
grasslands.

In the future, fire risks from plantation agriculture 
in peat involving drainage will only increase. Drainage 
leads to soil subsidence. As shown in [67], most drained 
plantations in peat have an expected lifecycle of 1 to 3 
rotations (25 to 75 years) before they are subsided to 
the level that seasonal flooding kills the trees (both oil 
palm and acacia are sensitive to high water tables). Sub-
sequently, the plantation will be abandoned. Abandoned 
plantations have a very high fire risk: their drained sta-
tus and ample dead biomass mean fires will propagate 
quickly in the dry season. When the area covered by 
abandoned plantations increases in the coming decades, 
fire risks will further increase. This again points to the 
need to develop new plantation models in peat, using 
paludiculture (no drainage) crops such as sago [46]. This 
should be done as soon as possible, before ongoing peat 
subsidence and increasing flood and fire risks constrain 
the possibilities for paludiculture, since most paludicul-
ture crops such as sago and jelutong are also sensitive to 
flooding and fire.

Conclusions
Indonesian peatlands have been drained for agricul-
tural development for several decades. Although this 
has contributed to economic development through 
large-scale and, to a lesser degree, smallholder planta-
tions, peat drainage is increasingly causing environ-
mental externalities with adverse economic impacts. 
One of these is air pollution resulting from peatland 
fires. Peatland fires occur every year, even though their 
extent is much larger in dry (El Niño) years. Peatland 
fires, therefore, increase the long-term exposure of 
people to air pollution. We find that  PM2.5 air pollution 
from peatland fires causes, on average, around 33,100 
adults and 2900 infants to die prematurely from air pol-
lution, in the islands of Sumatra and Kalimantan alone. 
In addition, peatland fires cause around 4390 additional 
hospital admissions related to respiratory diseases, 635 
thousand cases of severe asthma attacks in children, 
and 8.9 million lost work-days each year in these two 
islands. Sumatra and Kalimantan have the country’s 
highest concentrations of smoke from peatland fires, 
but there will also be health impacts of peatland fires in 
other Indonesian islands and in neighboring countries, 
in particular Singapore and Malaysia [68]. The main 
source of uncertainty is in the CRF that we use, with 
different CRFs leading to annual premature adult mor-
tality ranging from 19,900 to 64,800 cases. Currently, 
the population of both islands is relatively young. With 
aging of the population over time, vulnerabilities to air 

pollution and health effects from peatland fires will 
increase. Hence, it is critical that health effects from 
peatland fires are acknowledged and considered in 
decision making, providing an additional element in 
support of current Government of Indonesia policies to 
reduce drainage-based agriculture in peatlands.
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Additional file 1: A1.1 Occurrence of Peatland fires. Table A1. Burned 
peat and mineral lands by land cover class, 2013 to 2017 (hectare). A1.2 
Analysis of monthly PM2.5 concentrations.  PM2.5 concentrations are 
estimated using satellite Aerosol Optical Depth (AOD). AOD is a measure 
of the extinction (scattering and absorption) of light by aerosols in a 
column of air from the Earth’s surface up to space. The AOD is used to 
represent the abundance of total aerosol particles in an atmospheric 
column [17]. To analyze AOD, we use data from three satellite instruments: 
twin MODIS (MODerate resolution Imaging Spectroradiometer) 
instruments and the MISR (Multi‑angle Imaging Spectroradiometer) 
instrument [69]. We retrieve AOD with two algorithms that process MODIS 
radiances on both the Terra and Aqua satellites: Dark Target (DT) and Deep 
Blue (DB). The DT retrieval algorithm [70], is designed to retrieve AOD over 
dark surfaces (e.g. vegetated land surfaces and dark soils). The DB retrieval 
algorithm [71], uses blue wavelength measurements where the surface 
reflectance over land is typically much lower than at longer wavelengths, 
allowing for the retrieval of aerosol properties over both bright and dark 
surfaces. This study uses the recently released collection 6.1 of the MODIS 
retrieved AOD products, which include spatial resolution of 10 km and 
several updates to the DT [72], and DB algorithms [71, 73]. The MISR 
instrument [74], retrieval algorithm uses the same‑scene multi‑angular 
views provided by the nine view‑ angles to solve for surface and 
top‑of‑atmosphere reflectance contributions, providing AOD retrievals 
over bright and dark land surfaces without absolute surface reflectance 
assumptions [75]. Specifically, we use AOD retrieved from the recently 
released MISRv23 algorithm [76], which provides AOD at a spatial 
resolution of 4.4 km. Data from MODIS and MSIR is resampled at 4.4 km 
resolution and combined based on their relative uncertainties with 
Aerosol Robotic Network (AERONET) AOD ground measurements [17, 77, 
78]. AERONET is a global sun photometer network established by NASA 
and PHOTONS (PHOtométrie pour le Traitement Opérationnel de 
Normalisation Satellitaire) [79]. This study uses AOD at 550 nm from level 2 
of the version 3 AERONET data [80]. To convert the combined AOD to 
surface  PM2.5 concentrations, we use the simulated ratio of total column 
AOD to surface  PM2.5. The ratio of total column AOD to surface  PM2.5 is a 
function of the factors that relate  PM2.5 mass to satellite observations of 
AOD (e.g., aerosol size, aerosol composition, diurnal variation, relative 
humidity, and the vertical structure of aerosol extinction [81]. We simulate 
this relationship using the GEOS‑Chem chemical transport model. A full 
description of the GEOS‑Chem simulation used can be found in [17]. We 
use v11–01 of GEOS‑Chem, and our simulation is driven by assimilated 
meteorological data from the MERRA‑2 Reanalysis of the NASA Global 
Modeling and Assimilation Office (GMAO) [82]. The simulation is 
conducted for the years 2013 to 2017 with 47 vertical layers at a spatial 
resolution of 0.5° × 0.625° (~ 50 km × 60 km) across all of Asia (including 
Indonesia). The top of lowest model layer is ~ 100 m. Anthropogenic 
emissions of aerosols and their precursors are provided by the MIX 
inventory [83]. Biomass burning emissions are provided for individual 
years by the GFED4 open fire emissions inventory. A1.3 Emission factors. 
Table A2. Emission factors for above ground biomass (kg  PM2.5 per kg dry 
biomass). Table A3. Above ground biomass per hectare. Table A4. 
Emissions from peat biomass burning. Table A5. Emissions from biomass 
burning, per hectare. A1.4. Concentration‑Response functions. The 
meta‑analysis study included 53 cohort studies, 39 studies from North 
America, eight from Europe, and six from Asia [30]. The mean concentra‑
tion of  PM2.5 across the studies was 15.7 μg/m3, with higher 
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