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Abstract
Background Whether including additional environmental risk factors improves cardiovascular disease (CVD) 
prediction is unclear. We attempted to improve CVD mortality prediction performance beyond traditional CVD risk 
factors by additionally using metals measured in the urine and blood and with statistical machine learning methods.

Methods Our sample included 7,085 U.S. adults aged 40 years or older from the National Health and Nutrition 
Examination Survey 2003–2004 through 2015–2016, linked with the National Death Index through December 
31, 2019. Data were randomly split into a 50/50 training dataset used to construct CVD mortality prediction 
models (n = 3542) and testing dataset used as validation to assess prediction performance (n = 3543). Relative to 
the traditional risk factors (age, sex, race/ethnicity, smoking status, systolic blood pressure, total and high-density 
lipoprotein cholesterol, hypertension, and diabetes), we compared models with an additional 17 blood and urinary 
metal concentrations. To build the prediction models, we used Cox proportional hazards, elastic-net (ENET) penalized 
Cox, and random survival forest methods.

Results 420 participants died from CVD with 8.8 mean years of follow-up. Blood lead, cadmium, and mercury were 
associated (p < 0.005) with CVD mortality. Including these blood metals in a Cox model, initially containing only 
traditional risk factors, raised the C-index from 0.845 to 0.847. Additionally, the Net Reclassification Index showed 
that 23% of participants received a more accurate risk prediction. Further inclusion of urinary metals improved risk 
reclassification but not risk discrimination.

Conclusions Incorporating blood metals slightly improved CVD mortality risk discrimination, while blood and urinary 
metals enhanced risk reclassification, highlighting their potential utility in improving cardiovascular risk assessments.
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Background
Cardiovascular disease (CVD) is the top cause of mor-
tality in the United States and globally [1, 2]. Accurate 
prediction of CVD by identifying its top risk factors is 
crucial to effectively prevent this deadly and prevalent 
disease. Common CVD risk prediction methods, includ-
ing the Framingham Risk Score, Reynolds Risk Score, and 
Pooled Cohort Equations, use demographic factors (age, 
sex, race/ethnicity), clinical measures (blood pressure, 
diabetes status, total cholesterol, high density lipopro-
tein (HDL) cholesterol), and in specific instances, mark-
ers of inflammation (high sensitivity C-reactive protein) 
and family history measures [3–6]. These models predict 
CVD with varying accuracy [7]. These approaches, how-
ever, do not include environmental factors such as met-
als, which may increase prediction accuracy.

This study aimed to examine the predictive value of 
mixtures of metals measured in the blood and urine 
on CVD mortality. Exposure to toxic metals, such as 
lead, cadmium, and mercury, is known to have lasting 
adverse effects on the cardiovascular system, contribut-
ing to conditions such as hypertension, coronary heart 
disease, stroke, and increased mortality [8, 9]. Beyond 
these well-known risk factors, epidemiological evidence 
indicates that other metals may also pose cardiovascular 
risks. For instance, exposure to non-essential metals like 
arsenic and nickel has been associated with cardiovascu-
lar events, including atherosclerosis and elevated blood 
pressure [10, 11]. Moreover, higher concentrations of 
copper and cobalt, although essential, have been linked 
to oxidative damage and inflammation, thereby raising 
the risk of cardiovascular diseases [12, 13]. However, the 
predictive value of metals other than lead, cadmium, and 
mercury has never been examined in the context of CVD 
prediction. To build on prior work [14], we included mul-
tiple urinary metals in our prediction model, along with 
blood lead, mercury, and cadmium, which have already 
been shown to improve CVD mortality prediction, to 
assess whether adding these additional metals could fur-
ther enhance predictive performance. We benchmarked 
our prediction findings with the Framingham Risk Score, 
which used age, sex, blood pressure, diabetes status, 
smoking status, HDL cholesterol, and total cholesterol 
as predictors for coronary heart disease [3]. In this study, 
we refer to these predictors as “traditional predictors” 
because they are the commonly used risk factors from 
which we are trying to improve prediction performance. 
As a secondary analysis, we implemented machine learn-
ing techniques such as elastic-net and survival random 
forest to attempt to further improve prediction perfor-
mance of our metal mixtures model.

Methods
Study population
The study sample included seven continuous United 
States National Health and Nutrition Examination Sur-
vey (NHANES) cycles collected between 2003 and 2004 
and 2015–2016. NHANES is an annual cross-sectional 
survey that combines survey data, laboratory measures, 
and physical examinations to provide comprehensive 
nutrition and health data from a representative sample 
of the noninstitutionalized United States population 
[15]. Among 61,087 participants who participated in 
NHANES between the 2003–2004 and 2015–2016 cycles 
and had linked mortality data available, we restricted our 
sample to 21,933 individuals who were 40 years of age 
or older, since the risk of cardiovascular events is very 
low among those under 40 years of age [16]. We further 
excluded participants with missing information on met-
als and traditional predictors, leaving a total of 7,085 
participants for the analysis. Participants provided writ-
ten informed consent at the time of participation. This 
secondary data analysis is approved by the University of 
Michigan Institutional Review Board (HUM00195078).

Metal measurements
Venous blood samples and urinary samples were col-
lected at mobile exam centers by trained NHANES 
laboratory technologists and shipped to the Division 
of Laboratory Sciences, National Center for Environ-
mental Health for analysis. Whole blood was analyzed 
for lead, mercury, and cadmium using inductively cou-
pled plasma-dynamic reaction cell-mass spectrometry 
(ICP-DRC-MS) [17]. Urinary concentrations of cesium, 
molybdenum, thallium, cobalt, barium, lead, cadmium, 
uranium, tungsten, and antimony were also measured 
using ICP-DRC-MS [17]. Urinary mercury concentra-
tion was determined by flow injection cold vapor atomic 
absorption analysis in 2003–2004, and by ICP-DRC-MS 
in all following cycles [17]. Total urinary arsenic was 
measured by ICP-DRC-MS, while urinary dimethylar-
sinic acid and arsenobetaine were measured using high 
performance liquid chromatography coupled with ICP-
DRC-MS [17]. NHANES protocols for quality assurance 
and quality control (QA/QC) follow the 1988 Clinical 
Laboratory Improvement Act standards [18]. Detailed 
protocol manuals for each biomarker analysis across 
all cycle years are publicly available online through the 
NCHS [17]. For example, in 2015–2016 reported QA/QC 
procedures included screening equipment for contami-
nation, documenting maintenance, regular laboratory 
inspections, and equipment calibration [19]. Biomarker 
concentrations below the corresponding limit of detec-
tion (LOD) were imputed by NHANES as LOD/√2. The 
LODs for each metal across all included NHANES cycles 
are reported in Table S1. For this analysis, 17 metals 
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with detection rates over 50% were selected. Metals con-
centrations were natural-log-transformed due to their 
skewed distribution and standardized based on the mean 
and standard deviation of the training data. To account 
for hydration status, urinary creatinine was measured 
using the Roche/Hitachi Modular P Chemistry Analyzer. 
Missing values for urinary creatinine were imputed to the 
mean creatinine value of 114.01  mg/dL. We used these 
predicted creatinine levels in covariate-adjusted hydra-
tion standardization [20]. 

Cardiovascular disease mortality measures
NHANES data were linked with public-use mortality 
data from the National Death Index [15]. Participants 
were followed up through December 31, 2019. CVD 
mortality was identified using the International Classi-
fication of Diseases, Tenth Revision (ICD-10) codes. The 
ICD-10 codes used were 100–109, 111, 113, 120–151, 
and 160–169.

Covariate assessments
Demographic variables such as age, smoking status, race/
ethnicity, and sex were collected using NHANES self-
administered questionnaires [15]. Age was considered as 
a continuous variable. For confidentiality purposes, age 
was top coded at 85 years old. Smoking status was cate-
gorized as 0 (not a current smoker) or 1 (current smoker). 
Race/ethnicity was categorized as White, Black, Hispanic 
(defined as Mexican American or other Hispanic), or 
Other Race. Sex was categorized as male or female.

Systolic blood pressure (SBP) and diastolic blood pres-
sure (DBP) (in mmHg) were obtained in three separate 
measurements, with a fourth measurement taken in 
case of interrupted or incomplete measurements. We 
calculated mean SBP for our study by disregarding the 
first measurement and averaging the remaining mea-
surements for each participant. Total cholesterol was 
measured enzymatically in serum. HDL cholesterol 
was measured via a magnesium/dextran sulfate solu-
tion. Body mass index (BMI) was measured by trained 
health technicians using weight in kilograms divided by 
height squared in meters. Diabetes was defined as self-
reported physician diagnosis of diabetes mellitus, use 
of self‐reported antidiabetic medication, or hemoglobin 
A1c of 6.5% or higher. Hypertension was defined based 
on self-reported diagnosis, SBP of 140 mmHg or higher, 
DBP of 90 mmHg or higher, or the use of antihyperten-
sive medications.

Statistical methods
To ensure robust evaluation of our predictive model, we 
randomly divided our dataset into training (n = 3,542) and 
testing (n = 3,543) sets in a 1:1 ratio. The distributions of 
covariates between the testing and training datasets were 

described using mean and standard deviation for con-
tinuous covariates and number and frequency for cat-
egorical covariates. A chi-square test was used to test for 
differences in proportion of CVD mortality rates between 
the training and testing datasets.

Survival time was counted from the NHANES exami-
nation until the date of death for participants who died 
due to CVD. For participants who died from other 
causes, survival time was right-censored at the date of 
death. Surviving participants were right-censored at the 
last follow-up date (December 31, 2019).

We used Cox proportional hazards regression mod-
els to analyze the association between predictors and 
survival time in the training data. Our primary analysis 
progressed through four models. In model 1, we included 
the established traditional predictors from previous 
CVD risk scores, including age, race/ethnicity, smok-
ing status, SBP, total cholesterol, HDL cholesterol, BMI, 
hypertension status, and diabetes status. In model 2, 
we included linear terms of the available blood metals 
from NHANES. The purpose of model 2 was to com-
pare our results to previous findings that blood metals 
can improved CVD mortality prediction performance 
[14]. In model 3, we further included linear terms of 
the available urinary metals from the NHANES data to 
attempt prediction performance improvement. In model 
4, we additionally included quadratic terms and pairwise 
interactions to account for potential non-linear func-
tional forms and multiplicative interactions. To validate 
the model assumptions, we used Schoenfeld residuals to 
assess the proportional hazards assumption, Martingale 
residuals to evaluate the linearity of the predictors, and 
calculated the variance inflation factor (VIF) to check for 
multicollinearity.

As a secondary analysis, we built the prediction mod-
els using two machine learning methods—regularized 
elastic-net (ENET) and survival random forest meth-
ods—in the training data. ENET is a regularization tech-
nique that combines ridge regression and Least Absolute 
Shrinkage and Selection Operator (LASSO) regression 
that adds penalty terms to the model that introduces bias 
to decrease variance and attempt to improve prediction 
performance [21–23]. It also performs variable selection, 
shrinking the coefficients of less impactful variables to 
zero. The alpha parameter for the ENET models repre-
sents the weight of the L1 and L2 penalties used in train-
ing the model. Specifically, alpha takes values between 0 
and 1, where 0 corresponds to only using L2 norm (ridge 
regression) and 1 corresponds to only using L1 norm 
(LASSO). This parameter was selected as the optimal 
weight that gave the best prediction performances on 
the testing data. The optimal lambda (overall penalty) 
was selected via 10-fold cross validation. More specifi-
cally, the model was fitted 11 times: once to obtain the 
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sequence of lambda values, and 10 more times to fit the 
model with each fold excluded from the dataset. The 
excluded fold for each fit was then used to evaluate error, 
and lastly these errors were averaged to get the training 
error. Then the lambda value with the minimal training 
error was selected. To adjust for traditional CVD risk fac-
tors within the models, we constrained these variables 
against shrinkage. The ENET analyses included a model 
with traditional predictors (model 5), a model combining 
traditional predictors with blood metal variables (model 
6), a model that added urinary metals (model 7), and a 
model that incorporated squared and interaction terms 
for all metals (model 8). ENET was performed using the 
R package “glmnet” [22–24]. 

Random forest is an ensemble machine learning 
method that combines numerous decision trees to 
account for overfitting and non-linearity [25]. Survival 
random forest extends this method to time-to-event data 
[26, 27]. We tuned hyperparameters, including the num-
ber of nodes variables at each split, via out-of-bag valida-
tion. Node sizes between 1 and 100 were tried. Various 
number of variables were tried around the neighbor-
hood of total number of variables divided by 2. Because 
the random forest model is designed to consider non-
parametric effects, we only trained a baseline model with 
the traditional predictors (model 9), a model adding the 
blood metals (model 10), and a model further including 
urinary metal variables (model 11). The R package “ran-
domForestSRC” was used to perform the survival ran-
dom forest [28]. 

The prediction performance of all models was evalu-
ated using the testing dataset. The risk discrimination 
was measured using Harrell’s C-index [29–31]. The 
C-index is a value between 0 and 1 that measures con-
cordance between observed and predicted survival times 
[29–31]. Additionally, we applied the continuous Net 
Reclassification Index (NRI) to evaluate the risk reclas-
sification [32, 33]. The NRI calculates the proportions of 
cases that are correctly assigned a higher predictive prob-
ability and noncases that are assigned a lower probability 
with the inclusion of additional predictors.

In sensitivity analyses, we compared our models to 
the original Framingham Heart Study [3]. To do this, we 
calculated the Framingham Risk Score based on score 
sheets for men and women [3], then fit Cox propor-
tional hazards models with the total score as a predictor 
and validated the model’s prediction performance using 
C-index. We then attempted to improve the C-index 
from the Framingham Study’s score by adding the blood 
and urinary metals to the model. We attempted to fur-
ther improve prediction performance by adding the 
squared and interaction terms to account for non-lin-
earity. We also assessed our models’ performance when 
restricting follow-up time to various lengths. Specifically, 

we fit all models to follow-up times exceeding 3 years 
and 5 years, respectively. Additionally, we adjusted for 
more potential confounders, including the poverty-to-
income ratio (PIR) and healthy eating index (HEI) [34], 
in the Cox proportional hazards models. Furthermore, 
we evaluated the model’s performance by excluding 39 
participants (15 from the training set and 24 from the 
testing set) with missing urinary creatinine data. Finally, 
to address the potential imbalance between CVD mor-
tality and non-CVD mortality in the dataset, we applied 
the synthetic minority oversampling technique (SMOTE) 
to create a more balanced training dataset [35]. SMOTE 
uses a k-nearest-neighbor algorithm to oversample the 
minority class by generating synthetic samples based 
on existing minority instances. Specifically, we applied 
SMOTE with 5 nearest neighbors and targeted a 50/50 
distribution between CVD mortality cases and non-CVD 
mortality cases. After applying SMOTE, our training data 
included 6,496 observations, of which 3,165 (48.7%) were 
CVD mortality cases, comprising both original and syn-
thetic cases. SMOTE was not applied to the testing data 
to ensure that model performance was validated on the 
original, unaltered dataset. The “smotefamily” R package 
was used to perform the SMOTE.

All analyses were conducted using R, version 4.2.0 
(www.R-project.org).

Results
Study sample characteristics
Characteristics of the training and testing datasets are 
shown in Table  1. In the training dataset (n = 3,542), 
the mean (SD) age of participants was 60 (12) years. 
Throughout 16 years of follow-up, there 211 cases of 
cardiovascular disease mortality (mortality rate = 3.7 per 
1000 person-year). Similar distributions of all character-
istics were observed in testing dataset (n = 3,543).

Associations between metals and CVD mortality
Cox regression models for individual metals showed that 
only the metals measured in blood (lead, mercury, and 
cadmium) were significantly associated with CVD mor-
tality (Table  2). The hazard ratios (HRs) for CVD mor-
tality, corresponding to a one standard deviation increase 
in the log-transformed concentrations of metals, were as 
follows: blood lead (HR = 1.40, 95% confidence interval 
[CI]: 1.23, 1.59) and blood cadmium (HR = 1.21, 95% CI: 
1.06, 1.38) were associated with increased hazard of CVD 
mortality. Conversely, blood mercury was associated with 
decreased hazard (HR = 0.80, 95% CI: 0.69, 0.92). There 
were no statistically significant associations between uri-
nary metal concentrations and CVD mortality.

http://www.R-project.org
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Predicting CVD mortality using primary cox models
Regarding the risk discrimination (Table 3), the Cox pro-
portional hazards model using traditional continuous 
predictors alone (Model 1) yielded a C-index of 0.845. 
Incorporation of blood metals (Model 2) resulted in a 
minor increase in the C-index to 0.847. The addition of 
urinary metals (Model 3) decreased the C-index slightly 
to 0.843. Introducing quadratic and pairwise interac-
tions for metals (Model 4) further reduced the C-index 
to 0.783. In terms of risk reclassification, the continuous 
NRI compared to Model 1 was 0.23 (95% CI: 0.09, 0.38) 

for Model 2, 0.21 (95% CI: 0.07, 0.35) for Model 3, and 
0.35 (95% CI: 0.21, 0.48) for Model 4.

Schoenfeld’s global test indicated that the proportional 
hazards assumption was violated in Model 1 (P = 0.02), 
but not in Model 2 (P = 0.06), Model 3 (P = 0.27), and 
Model 4 (P = 0.18). Variance Inflation Factor (VIF) values 
were below 10 for all predictors in Models 1–3, except for 
urinary arsenic in Model 3 (VIF = 12.7), suggesting mini-
mal multicollinearity. Martingale residuals showed mini-
mal violation of the linearity assumption for continuous 
predictors (Figure S1).

Table 1 Characteristics of study participants in the National Health and Nutrition Examination Survey with complete data, randomly 
split into testing and training sets
Characteristic Training data (n = 3,542) Testing data (n = 3,543)
Follow-up characteristics
 CVD mortality, number of cases (%) 211 (6%) 209 (5.9%)
 Follow-up time, mean (SD), years 8.9 (4.0) 8.7 (4.0)
Baseline characteristics
 Age, mean (SD), years 60 (12) 60 (13)
 Race/ethnicity, number of participants (%)
  Non-Hispanic White 1,689 (48%) 1,667 (47%)
  Non-Hispanic Black 713 (20%) 720 (20%)
  Hispanic 850 (24%) 886 (25%)
  Other race 290 (8.2%) 270 (7.6%)
 Male, number of participants (%) 1,795 (51%) 1,748 (49%)
 Current smoker, number of participants (%) 644 (18%) 659 (19%)
 Systolic blood pressure, mean (SD), mmHg 129 (20) 129 (19)
 Total serum cholesterol, mean (SD), mg/dL 199 (42) 200 (43)
 HDL cholesterol, mean (SD), mg/dL 54 (17) 54 (17)
 BMI categories, number of participants (%)
  Under- and normal weight (< 25 kg/m2) 921 (26%) 918 (26%)
  Overweight (25–30 kg/m2) 1,294 (37%) 1,231 (35%)
  Obese (≥ 30 kg/m2) 1,327 (37%) 1,394 (39%)
 Hypertension, number of participants (%) 1,688 (48%) 1,721 (49%)
 Diabetes, number of participants (%) 675 (19%) 641 (19%)
 Blood lead, median (IQR), µg/dL 1.41 (0.93, 2.19) 1.41 (0.92, 2.23)
 Blood mercury, median (IQR), µg/L 0.89 (0.46, 1.80) 0.88 (0.47, 1.72)
 Blood cadmium, median (IQR), µg/L 0.35 (0.22, 0.62) 0.35 (0.21, 0.60)
 Urinary total arsenic, median (IQR), µg/L 8.06 (3.89, 16.00) 7.64 (3.88, 17.03)
 Urinary dimethylarsinic acid, median (IQR), µg/L 3.61 (2.00, 6.12) 3.56 (2.01, 6.29)
 Urinary arsenobetaine, median (IQR), µg/L 1.30 (0.80, 6.36) 1.30 (0.82, 6.16)
 Urinary cesium, median (IQR), µg/L 4.46 (2.74, 6.62) 4.53 (2.80, 6.86)
 Urinary molybdenum, median (IQR), µg/L 40.20 (21.60, 68.66) 40.70 (21.60, 69.60)
 Urinary thallium, median (IQR), µg/L 0.15 (0.09, 0.23) 0.15 (0.09, 0.24)
 Urinary cobalt, median (IQR), µg/L 0.34 (0.21, 0.54) 0.35 (0.21, 0.56)
 Urinary barium, median (IQR), µg/L 1.12 (0.56, 2.16) 1.17 (0.57, 2.24)
 Urinary lead, median (IQR), µg/L 0.52 (0.28, 0.92) 0.54 (0.30, 0.94)
 Urinary cadmium, median (IQR), µg/L 0.28 (0.14, 0.54) 0.29 (0.14, 0.57)
 Urinary mercury, median (IQR), µg/L 0.34 (0.15, 0.76) 0.34 (0.15, 0.76)
 Urinary uranium, median (IQR), µg/L 0.01 (0.00, 0.01) 0.01 (0.00, 0.01)
 Urinary tungsten, median (IQR), µg/L 0.06 (0.03, 0.12) 0.07 (0.03, 0.13)
 Urinary antimony, median (IQR), µg/L 0.05 (0.03, 0.09) 0.05 (0.03, 0.09)
 Urinary creatinine, median (IQR), mg/dL 100.00 (58.00, 153.75) 105.00 (60.00, 155.00)
Note: CVD, cardiovascular disease; SD, standard deviation; HDL, high-density lipoprotein; BMI, body mass index; IQR, interquartile range
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Predicting CVD mortality using secondary machine 
learning approaches
For the ENET model, the C-index showed slight 
improvement from the model with only traditional pre-
dictors (Model 5, C-index = 0.828) to the model includ-
ing main effects for the metal concentrations (Model 
6, C-index = 0.830) (Table  3). Blood lead, blood mer-
cury, and urinary cesium were retained as nonzero 
predictors for CVD death (Table S2). The inclusion of 
quadratic and interaction terms for metals (Model 8) 
in the ENET model also produced a C-index of 0.830. 
Nonzero predictors retained in Model 8 included blood 
lead, blood mercury, and an interaction term for urinary 
thallium*urinary creatinine. Regarding risk reclassifica-
tion, the continuous NRI for Model 6 compared to Model 
5 was 0.66 (95% CI: 0.52, 0.80), for Model 7 compared to 
Model 5 it was 0.51 (95% CI: 0.37, 0.64), and for Model 8 
compared to Model 5, it was 0.76 (95% CI: 0.62, 0.90).

The survival random forest model utilizing only tradi-
tional predictors (Model 9) achieved a C-index of 0.833 
(Table  3). When blood metals were included alongside 
traditional predictors (Model 10), the model’s C-index 
decreased to 0.8326. The addition of urinary metals to 
traditional predictors also gave a C-index of 0.826 (Model 
11). Non-positive continuous NRIs were observed for 
both Model 10 and Model 11.

Sensitivity analyses
The model that incorporated the Framingham Risk 
Score as a predictor of CVD mortality yielded a C-index 

Table 2 Individual metal associations with cardiovascular 
disease mortality in the National Health and Nutrition 
Examination Survey
Metala Hazard Ratiob (95% CI) P
Blood lead 1.40 (1.23, 1.59) < 0.001
Blood mercury 0.80 (0.69, 0.92) 0.001
Blood cadmium 1.21 (1.06, 1.38) 0.004
Urinary total arsenic 1.00 (0.99, 1.01) 0.512
Urinary dimethylarsinic acid 1.00 (0.99, 1.01) 0.957
Urinary arsenobetaine 1.00 (0.99, 1.01) 0.604
Urinary cesium 1.00 (0.99, 1.02) 0.384
Urinary molybdenum 1.00 (0.99, 1.01) 0.722
Urinary thallium 1.00 (0.99, 1.01) 0.604
Urinary cobalt 1.01 (1.00, 1.03) 0.137
Urinary barium 1.00 (0.99, 1.01) 0.768
Urinary lead 1.00 (0.99, 1.01) 0.824
Urinary cadmium 1.00 (0.99, 1.02) 0.563
Urinary mercury 1.00 (0.99, 1.01) 0.851
Urinary uranium 1.00 (0.99, 1.01) 0.889
Urinary tungsten 1.00 (0.99, 1.01) 0.831
Urinary antimony 1.00 (0.99, 1.01) 0.693
a All metal concentrations were natural-log transformed and standardized, thus 
hazard ratios correspond to one standard deviation increase in the log scale of 
the metal concentrations
b Hazard ratios were generated from separate Cox models for each chemical, 
adjusting for age, race/ethnicity, smoking status, systolic blood pressure, 
total cholesterol, high-density lipoprotein cholesterol, body mass index, 
hypertension status, and diabetes status. Urinary models were additionally 
adjusted for creatinine

Table 3 Comparison of C-index and net reclassification index (NRI) across models. Models are predicting cardiovascular disease 
mortality in the testing dataset of the National Health and Nutrition Examination Survey
Model C-index Continuous NRI (95% CI) # of Predictorsa

Cox Proportional Hazards Model
 Model 1: Traditional Predictorsb 0.845 10
 Model 2: + Blood Metalsc 0.847 0.23 (0.09, 0.38) 13
 Model 3: + Urinary Metalsd 0.843 0.21 (0.07, 0.35) 28
 Model 4: + Metals quadratic/interaction termse 0.773 0.35 (0.21, 0.48) 177
Elastic-Net
 Model 5: Traditional Predictorsb 0.828 10
 Model 6: + Blood Metalsc 0.830 0.66 (0.52, 0.80) 12
 Model 7: + Urinary Metalsd 0.830 0.51 (0.37, 0.64) 14
 Model 8: + Metals quadratic/interaction termse 0.830 0.76 (0.62, 0.90) 13
Survival Random Forest
 Model 9: Traditional Predictorsb 0.833 10
 Model 10: + Blood Metalsc 0.826 -0.18 (-0.32, -0.04) 13
 Model 11: + Urinary Metalsd 0.826 -0.49 (-0.63, -0.35) 28
a Number of Predictors: refers to the total number of variables included in the model
b Traditional predictors include age, race/ethnicity, smoking status, systolic blood pressure, total cholesterol, high density lipoprotein cholesterol, body mass index, 
hypertension status, and diabetes status
c Blood metals include lead, mercury, and cadmium
d Urinary metals include cesium, molybdenum, thallium, cobalt, barium, lead, cadmium, uranium, tungsten, antimony, mercury, arsenic, dimethylarsinic acid, and 
arsenobetaine
e Metals quadratic/interaction terms indicate all possible quadratic and pairwise interactions between metals listed above
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of 0.771 for men and 0.680 for women, showing a slight 
underperformance compared to the original study’s 
C-index of 0.730 for men and 0.760 for women, as noted 
in Table S3. The inclusion of main effects for blood met-
als in the model resulted in a modest improvement in the 
C-index to 0.776 for men and 0.707 for women. However, 
the addition of main effects for urinary metals led to a 
reduction in the C-index to 0.768 for men and 0.670 for 
women. Further incorporation of interaction and qua-
dratic terms for metals decreased the C-index to 0.625 
for men and 0.618 for women.

When restricting follow-up time to more than 3 and 5 
years, the C-indices showed only a slight decrease across 
all models (Table S4). However, the continuous NRI sig-
nificantly decreased for Models 2 and 4 when the follow-
up time was restricted to more than 3 years.

Adjusting for PIR and HEI in the Cox proportional haz-
ards models yielded similar results (Table S5).

When evaluating the model’s performance by exclud-
ing 39 participants with missing urinary creatinine data, 
the results remained consistent with those of the primary 
analysis (Table S6).

After applying the SMOTE to balance the training 
dataset, we observed similar improvements in predictive 
performance when incorporating metals as compared to 
the primary analysis (Table S7).

Discussion
In this large, diverse sample of 7,085 U.S. adults aged 
40 years and above with up to 16 years of follow-up, the 
incorporation of a combination of three metal concentra-
tions in blood (lead, cadmium, and mercury) improved 
the predictive performance for CVD mortality compared 
to only using the traditional risk factors in terms of both 
risk discrimination and risk reclassification. However, 
additionally adding urinary metals to the model with tra-
ditional CVD risk factors and blood metals did not fur-
ther improve the risk discrimination. Despite this, the 
inclusion of urinary metals enhanced risk reclassification 
metrics in both the Cox proportional hazards and ENET 
models.

Our findings are consistent with previous research 
with similar study samples. For example, Wang et al. uti-
lized NHANES cycles from 1999 to 2012 and observed a 
C-index of 0.845 when predicting CVD mortality using 
the same traditional predictors as in our study [14]. The 
original Framingham Risk Score showed a sex stratified 
C-index of 0.74 for men and 0.77 for women [3]. When 
using the categorized risk scores from the Framingham 
study as a predictor for CVD mortality in the NHANES 
data, we obtained C-indices of 0.771 for men and 0.680 
for women. Although our model with continuous pre-
dictors study did not stratify by sex, our C-index using 
the traditional predictors (including race/ethnicity and 

continuous age, SBP, HDL-C and total cholesterol) was 
noticeably larger (0.845). This is likely due to the larger 
and more diverse sample size that the NHANES dataset 
provides, as well as the precision gained from using con-
tinuous predictors. Specifically, the Framingham study 
consisted of a study sample of white participants aged 30 
to 74 years old, while our study included a more repre-
sentative sample of the U.S. population and only included 
adults aged 40 and older. In addition, we used their model 
to predict CVD mortality, while the model was originally 
designed to predict coronary heart disease risk [3]. 

There are few other studies investigating the efficacy 
of environmental factors on CVD mortality prediction. 
Previous research has found that particulate matter 
and Normalized Difference Vegetation Index improved 
C-index compared to only traditional variables when pre-
dicting stroke and myocardial infarction [36]. It has also 
been shown that adding lead, cadmium, and mercury 
measured in the blood to a model only including tradi-
tional predictors improved both C-index and net reclas-
sification index for CVD mortality in NHANES data [14]. 
These findings indicate potential utility of environmental 
risk factors for CVD risk and mortality and emphasize 
the necessity of additional research in this area.

Although incorporating blood metals into the predic-
tion model enhanced performance in a similar cohort, 
our findings indicate that the addition of urinary met-
als did not improve the predictive performance for CVD 
mortality in terms of risk discrimination. However, the 
inclusion of urinary metals did enhance risk reclassifi-
cation in Cox proportional hazards and ENET models. 
There are several possible explanations for this discrep-
ancy. Our analysis revealed no significant associations 
between urinary metals and CVD mortality, either indi-
vidually or in a mixture model. The inclusion of predic-
tors not strongly linked to the outcome is unlikely to 
enhance discrimination accuracy. Moreover, introducing 
fourteen urinary metals increased the model’s complex-
ity. While this complexity may have led to overfitting, 
diminishing the discrimination accuracy, it appears to 
have improved the model’s ability to improve predicted 
risks in the right direction, thereby enhancing the NRI.

In our secondary analysis, we found that machine 
learning methods did not enhance CVD mortality pre-
diction performance as measured by Harrell’s C-index 
compared to traditional methods. Among the prediction 
methods evaluated, the Cox proportional hazards model 
yielded the best results, both with only traditional predic-
tors and with the inclusion of main effects from metals. 
ENET was developed to overcome limitations of ridge 
regression and LASSO, such as handling high correla-
tions between predictors and addressing complex, non-
linear relationships with the outcome [21]. Similarly, the 
random forest method is suited for complex prediction 
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scenarios and for dealing with non-linear predictors [25]. 
However, because both methods are optimized for more 
complex modeling scenarios than those presented in this 
analysis, the Cox model appeared to be the most effec-
tive for this particular context. Additionally, the relatively 
low number of CVD mortality events in our dataset may 
have hindered the performance of the machine learning 
methods due to insufficient outcome events to train these 
models effectively.

Prediction of CVD mortality was the primary goal in 
this study, but we additionally evaluated the associations 
between individual metals and CVD mortality to bet-
ter understand the relationship between our exposures 
and our outcome. Our findings confirm the associations 
of blood lead, blood cadmium, and blood mercury with 
mortality from previous studies [37–39]. Past research 
also shows an association between urinary cadmium 
and CVD mortality [40, 41], but was not observed in our 
analysis. Lead has been shown to have an association 
with lipoprotein disorders and atherosclerosis and blood 
cadmium has been linked to elevated blood pressure, 
another risk factor for CVD [42]. Associations between 
mercury and CVD are inconclusive, but dietary seafood 
intake could confound this association [42]. 

The findings of our current study extend the conclu-
sions of our previous research, wherein we demonstrated 
that incorporating blood heavy metals into traditional 
CVD prediction models enhances predictive perfor-
mance for CVD mortality [14]. Although adding urinary 
metals did not significantly enhance risk discrimina-
tion (C-index), it did improve risk reclassification (NRI). 
While these gains in predictive metrics are modest and 
may have limited real-world impact, even small improve-
ments can have public health significance given the prev-
alence of cardiovascular disease. Clinically, these results 
suggest that integrating environmental exposure data 
into risk assessments could help better identify at-risk 
populations, particularly for populations with high envi-
ronmental exposure, leading to more targeted preven-
tive strategies and potentially more efficient allocation of 
healthcare resources. Our study had many limitations to 
consider. First, the ENET method produces biased coef-
ficient estimates due to the penalty term it introduces 
for variable selection. Although we prefer unbiased esti-
mates, the bias incurred from ENET was acceptable 
because we were only interested in prediction perfor-
mance of our model as opposed to inference. Second, 
confounding continues to be a limitation in many obser-
vational studies, and ours is no exception. We attempted 
to control for confounding by adjusting for sociodemo-
graphic and lifestyle variables consistent with previous 
studies, but there are possibly more confounding vari-
ables that have not been accounted for that could affect 
the validity of past and current CVD prediction research. 

Third, NHANES uses complex survey weighting meth-
ods to ensure that each cycle is representative of the U.S. 
population [15]. Due to the challenges of incorporating 
survey weights into the machine learning models used 
in this study, we elected not to account for the NHANES 
survey design. As a result, our findings are generalizable 
to the study population within NHANES, but not neces-
sarily to the broader U.S. population. Fourth, there is a 
lack of robust methods to statistically compare C-index 
values between different machine-learning models in 
survival analysis. Finally, our study attempted to improve 
CVD mortality prediction by adding a mixture of 17 met-
als to the model at once. It is difficult to determine which 
individual metals contributed the most to the Cox model 
with this method, because we did not examine the indi-
vidual prediction efficacy of individual metals.

Our analysis also has several strengths. One such 
strength is the diversity of the study sample. The large 
sample size and a nearly nine-year average follow-up 
time gave us the power to build complex models to con-
sider the predictive value of seventeen different metals on 
CVD mortality. The metal exposures are well quantified 
and were collected from both blood and urine to provide 
an accurate measurement of metal exposure from the 
study sample. Our study used a combination of classical 
statistical models and modern machine learning tech-
niques to create and validate complicated metal mixtures 
prediction models. Our findings were robust to multiple 
train-test splits.

Conclusions
In a study of a large sample, we observed that incorpo-
rating blood metal concentrations (lead, cadmium, and 
mercury) modestly improved the prediction performance 
for CVD mortality in both the Cox proportional hazards 
models and ENET models, compared to using traditional 
risk factors alone. While the addition of urinary metal 
concentrations did not enhance risk discrimination, it 
did improve risk reclassification metrics. Given the ongo-
ing global burden of CVD mortality, our findings offer 
insights into potential predictors that could be consid-
ered to better identify and manage individuals at risk for 
CVD.
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