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Abstract 

Background Previous studies on the associations of per‑ and polyfluoroalkyl substances (PFASs) and heavy metals 
with lipid profiles among adolescents have been scarce. We sought to investigate the associations of PFASs and heavy 
metals with blood lipid levels in a representative sample of Korean adolescents.

Methods Data from the Korean National Environmental Health Survey (2018–2020) were used. Concentrations 
of PFASs [perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid, per‑
fluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDeA)], lead, and mercury were measured in serum, whole 
blood, and urine samples, respectively. Linear regression, Bayesian kernel machine regression (BKMR), and k‑means 
clustering analyses were employed to evaluate the associations between pollutants and lipid levels.

Results In the linear regression analyses, PFOA levels were associated with higher low‑density lipoprotein choles‑
terol (LDL‑C) levels; PFOS with higher total cholesterol (TC) levels; PFNA with higher TC, LDL‑C, and non‑high‑density 
lipoprotein cholesterol (non‑HDL‑C) levels; PFDeA with higher TC, LDL‑C, non‑HDL‑C, and high‑density lipoprotein 
cholesterol levels; and mercury with higher TC and non‑HDL‑C levels. The BKMR analysis revealed that the PFAS 
and heavy metal mixture was associated with higher LDL‑C levels (1.8% increase in LDL‑C at the 75th percentile of all 
PFAS and heavy metal concentrations compared to their median values, 95% credible interval: 0.5, 3.1), primarily 
driven by the effect of PFDeA. Compared to individuals in the low pollutant exposure cluster (geometric mean levels 
of PFOA, PFOS, PFHxS, PFNA, PFDeA, lead, and mercury were 2.7 μg/L, 6.2 μg/L, 1.6 μg/L, 0.7 μg/L, 0.4 μg/L, 0.8 μg/
dL, and 0.3 μg/L, respectively), those in the high pollutant exposure cluster (5.1 μg/L, 10.7 μg/L, 3.7 μg/L, 1.3 μg/L, 
0.6 μg/L, 0.9 μg/dL, and 0.4 μg/L, respectively) demonstrated higher TC levels (2.5% increase in TC, 95% confidence 
interval: 0.1, 5.0) in the k‑means clustering analysis.

Conclusion Due to the limitations of this study, such as its cross‑sectional design, these results should be interpreted 
cautiously and confirmed in future studies before drawing implications for public health strategies aimed at promot‑
ing health during adolescence and later in life.
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Background
Lipids play a crucial role in maintaining biological struc-
tures, such as cell membranes, and supporting the proper 
function of physiological systems, including hormonal 
systems [1]. Poor lipid profiles can induce various adverse 
health outcomes, particularly atherosclerosis and cardio-
vascular disease (CVD), the leading cause of death glob-
ally [2]. Because atherosclerosis, the initial stage of CVD, 
can begin before adulthood, disruption of lipid metabo-
lism (resulting in poor lipid profiles) during adolescence 
can increase the risk of CVD in later stages of life [3]. 
The prevalence of dyslipidemia (abnormal blood lipid 
levels) was 21.8% among United States adolescents aged 
12–19  years [4], 29.1% among Beijing boys and 23.6% 
among Beijing girls aged 10–18  years [5], and 24.9% 
among Korean adolescents aged 10–18 years [6].

Per- and polyfluoroalkyl substances (PFASs) are a 
group of synthetic chemicals characterized by an alkyl 
chain with one or more fluorinated carbon atoms. Due 
to their water- and stain-repellent properties and ther-
mal stability, PFASs have been widely used in consumer 
and industrial products, such as food packaging materi-
als, nonstick cookware, waterproof fabrics, carpeting, 
firefighting foams, and metal plating [7]. The epidemio-
logical evidence linking PFAS exposure to metabolic out-
comes, such as diabetes, overweight, and obesity, remains 
insufficient [8]. However, the associations between PFAS 
exposure and blood lipid levels are widely recognized 
across various populations [9, 10], including children and 
adolescents [11].

However, a systematic review found inconsistent and 
controversial results regarding the association between 
PFAS exposure and blood lipid levels [9]. Additionally, 
although potential age-related variability was noted [9], 
studies focusing on pre-adult populations are scarce.

Heavy metals, such as lead and mercury, are legacy 
pollutants that persist in the environment and have bio-
accumulative properties [12]. Humans are exposed to 
these metals through both anthropogenic sources (e.g., 
industrial, agricultural, and household activities) and 
natural sources [10, 11]. A limited number of studies 
have explored the associations between lead and mercury 
exposure and lipid levels in the general population, and 
the results have been inconsistent regarding exposure 
and outcome parameters [13–18]. In addition, studies 
investigating these associations in pre-adult populations 
are even more limited [17, 18].

People are often exposed to multiple pollutants simul-
taneously, rather than to specific individual pollutants. 
Sources of co-exposure to PFASs and heavy metals, such 
as fish and seafood, are estimated to contribute up to 86% 
of dietary PFAS exposure and are considered an impor-
tant source of heavy metals, especially mercury [19, 20]. 

In addition, overlapping biological mechanisms, such as 
oxidative stress-related hepatotoxicity and perturbation 
of thyroid and sex hormones, have been suggested for the 
impacts of PFASs and heavy metals on lipid levels [21–
26]. Therefore, synergistic effects and/or concentration 
addition from co-exposure to PFASs and heavy metals 
may occur due to these potentially shared toxicological 
pathways [25, 26]. However, while several studies have 
investigated the combined effects of PFASs and heavy 
metals on various outcomes [27–29], to the best of our 
knowledge, none have examined their combined effects 
on blood lipid levels, which represents a significant 
research gap.

Adolescence is considered a vulnerable period for envi-
ronmental hazards due to immature biological systems, 
significant physiological and hormonal changes, and rap-
idly evolving behaviors and the living environments [28, 
29]. Therefore, in the present study, we investigated the 
associations of PFASs and heavy metals with blood lipid 
levels in a representative sample of Korean adolescents. 
We hypothesize that PFASs and heavy metals are both 
individually and collectively associated with unfavorable 
lipid profiles in adolescents.

Methods
Study design and population
This study utilized data from the Korean National Envi-
ronmental Health Survey (KoNEHS), a nationwide 
cross-sectional survey conducted by the Korean Minis-
try of Environment under Article 14 of the Environmen-
tal Health Act, 2008. Since 2009, the KoNEHS has been 
conducted every three years to gather data on environ-
mental pollutant exposure, along with demographic, 
socioeconomic, and behavioral characteristics in a rep-
resentative sample of the Korean population. The survey 
uses a two-stage proportionally stratified sampling design 
based on region, type of educational institution, age, and 
gender. It includes biospecimen sampling and analysis, 
clinical tests, and questionnaires on lifestyle and expo-
sure sources [30, 31]. The survey protocol was reviewed 
and approved by the Research Ethics Committee of the 
National Institute of Environmental Research (No. NIER-
2018-BR-003–02), and written informed consent was 
obtained from all participants. This study, using pub-
licly available de-identified data from the KoNEHS, was 
approved by the Institutional Review Board of Severance 
Hospital (No. 4–2024-0588).

Since PFASs were first measured in the fourth cycle 
(2018–2020) of the KoNEHS, and this cycle’s data is 
the latest publicly available, we utilized it for our study. 
The adolescent dataset included 828 individuals aged 
12–17 years from 67 middle and high schools across the 
country. After excluding three participants due to the 
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lack of information on blood lipid parameters and seven 
due to the lack of information on urine mercury levels, 
the final sample consisted of 818 adolescents. No adoles-
cent reported current use of lipid-lowering medications.

Biospecimen collection and measurement of PFASs 
and heavy metals
Biospecimens (blood and urine) were collected at medi-
cal institutions near the schools where the participating 
adolescents were enrolled, without considering fasting 
status. Samples were transported to biobanks within 24 h 
while maintaining a temperature of 2–6 ℃. They were 
then processed and stored in deep freezers at -20 ℃. Ali-
quots were sent to a certified laboratory for analysis every 
two weeks.

Detailed descriptions of the analytical methods and 
quality control procedures for PFASs and heavy metals 
have been published elsewhere [32–34]. Briefly, 800 μL of 
acetonitrile was added to a 200 μL of serum sample, fol-
lowed by centrifugation at 13,000 rpm for 10 min. After 
800 μL of supernatant was collected, it was concentrated 
for 15–20 min using nitrogen gas and reconstituted with 
25 μL of 50% methanol. The reconstituted samples were 
used for quantifying five legacy PFASs [perfluoroocta-
noic acid (PFOA), perfluorooctane sulfonic acid (PFOS), 
perfluorohexane sulfonic acid (PFHxS), perfluoronona-
noic acid (PFNA), and perfluorodecanoic acid (PFDeA)] 
by high-performance liquid chromatography with tan-
dem mass spectrometry (Q-Sight Triple Quad, Perki-
nElmer, MA, USA). The limits of detection (LOD) were 
0.050 μg/L for PFOA, 0.056 μg/L for PFOS, 0.071 μg/L for 
PFHxS, 0.019 μg/L for PFNA, and 0.017 μg/L for PFDeA. 
Two participants had PFHxS levels below the LOD; how-
ever, all participants had concentrations above the LOD 
for the other PFASs.

Blood lead and urine cadmium levels were measured 
using whole blood and spot urine samples, respectively, 
by graphite furnace-atomic absorption spectroscopy 
(AAnalyst 800, PerkinElmer, MA, USA). Urine mercury 
levels were analyzed using spot urine samples with a gold 
amalgamation direct mercury analyzer (DMA-80, Mile-
stone, CT, USA). The LOD were 0.17  μg/dL for blood 
lead, 0.04 μg/L for urine mercury, and 0.04 μg/L for urine 
cadmium. Although one adolescent had blood lead lev-
els below the LOD and six adolescents had urine mercury 
levels below the LOD, a substantial proportion of partici-
pants (213 adolescents, > 25%) had urine cadmium levels 
below the LOD. Therefore, we only considered blood lead 
and urine mercury levels as exposures in further analy-
ses. Urine creatinine levels were measured in spot urine 
samples used to measure urine mercury levels, employ-
ing the Jaffe reaction method (ADVIA 1800 Auto Ana-
lyzer, Siemens Healthineers, PA, USA).

Concentrations of PFASs and heavy metals below the 
LOD were imputed with the LOD value divided by the 
square root of two [35]. Various quality control measures, 
including internal quality control programs and par-
ticipation in the German External Quality Assessment 
Scheme, were implemented according to the National 
Institute of Environmental Research guidelines to ensure 
the precision and accuracy of the analysis.

Analysis of blood lipid parameters and definition 
of dyslipidemia
Serum concentrations of total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), and triglyceride 
(TG) were measured by the enzymatic method, the elimi-
nation/catalase method, and the glycerol phosphate oxi-
dase-Trinder without serum blank method, respectively 
(ADVIA 1800 Auto Analyzer, Siemens Healthineers, 
PA, USA). No participant had TC, HDL-C, or TG val-
ues lower than the LOD (10.0 mg/dL for TC, 5.0 mg/dL 
for HDL-C, and 8.0  mg/dL for TG). Serum low-density 
lipoprotein cholesterol (LDL-C) levels were calculated 
using the Friedewald equation [36]. We further indirectly 
estimated non-high-density lipoprotein cholesterol (non-
HDL-C) concentrations, a useful screening parameter 
not affected by fasting status or high TG, by subtracting 
HDL-C (mg/dL) from TC (mg/dL) [35, 36].

Dyslipidemia was considered as a secondary outcome. 
According to the National Heart, Lung, and Blood Insti-
tute’s Expert Panel Guidelines and the Korean Society of 
Pediatric Endocrinology’s Clinical Practice Guidelines 
[35, 37], dyslipidemia was defined as follows: high TC 
(≥ 200  mg/dL), high LDL-C (≥ 130  mg/dL), high non-
HDL-C (≥ 145  mg/dL), low HDL-C (< 40  mg/dL), and 
high TG (≥ 130 mg/dL).

Covariates
Based on previous studies [12, 13, 15, 38–42], we con-
structed a directed acyclic graph to illustrate the poten-
tial causal pathway for the associations of PFASs and 
heavy metals with blood lipid levels (Fig. S1). We iden-
tified the following variables as potential confounders 
or factors influencing lipid levels, without inducing col-
lider stratification bias or mediating the associations: age 
(years), gender (male or female), body mass index (BMI, 
kg/m2; < 18.5, 18.5–22.9, 23.0–24.9, or ≥ 25.0), paternal 
educational level (high school or lower, college or univer-
sity, graduate school, or missing), maternal educational 
level (high school or lower, college or university, graduate 
school, or missing), tobacco smoking (never smoker, past 
smoker, or current smoker), secondhand smoke exposure 
(no or yes), alcohol consumption (no or yes), regularly 
engaging in sweat-inducing exercise (no, exercise but not 
to the point of sweating, or yes), and fish intake (≤ once/
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month, 2–3 times/month, once/week, or ≥ twice/week). 
All this information was collected during the survey by 
trained interviewers using structured questionnaires. 
Missing values were observed only for paternal (n = 16) 
and maternal educational levels (n = 17), for which we 
used a missing indicator category. To ensure compara-
bility of the results, we adjusted for the same set of vari-
ables mentioned above in all analytical models (except for 
urine creatinine levels, which were additionally included 
in linear and logistic regression models that considered 
urine mercury levels as an exposure and in the pollutant 
mixture analysis models).

Statistical analysis
To control for the potential impacts of urine dilution on 
exposure assessment when using urine as a matrix (urine 
mercury levels), we applied a novel method suggested by 
O’Brien et al. [43]. The simple standardization method of 
dividing urine chemical levels by urine creatinine levels 
may not adequately account for variations in urine cre-
atinine levels due to differences in muscle mass and BMI. 
To address this, we first predicted urine creatinine lev-
els using linear regression models with age, gender, and 
BMI as predictors. Thereafter, we divided the measured 
urine mercury levels by the ratio of measured creatinine 
levels to predicted creatinine levels. In addition to using 
the covariate-adjusted standardized exposure meas-
ure, we also included urine creatinine levels as a covari-
ate (“covariate-adjusted standardization plus covariate 
adjustment”) [43].

We applied a natural log transformation to blood lipid 
parameters (serum TC, LDL-C, non-HDL-C, HDL-C, 
and TG levels) to approximate normal distributions and 
reduce the influence of outliers. PFAS (serum PFOA, 
PFOS, PFHxS, PFNA, and PFDeA levels) and heavy 
metal concentrations (blood lead and urine mercury lev-
els) were log2-transformed for the same reason and to 
improve interpretability by estimating results based on 
the doubling of exposures.

After visually confirming linear exposure-outcome 
relationships between pollutants and lipid parameters 
using generalized additive models (the mgcv package in R 
software) (Fig. S2), we evaluated the associations of indi-
vidual PFAS and heavy metal exposures with TC, LDL-C, 
non-HDL-C, HDL-C, and TG levels (continuous vari-
ables; primary outcomes) using linear regression models. 
Appropriate strata, cluster, and weight variables were 
incorporated into the models to estimate associations 
representative of Korean adolescent population. We used 
the SURVEYREG procedure in SAS software for these 
analyses.

Pearson’s correlation analysis was performed on 
log-transformed PFASs and heavy metals. Given the 

observed correlations among pollutants [ρ = 0.08 to 0.85 
and all p-values < 0.05 except for the correlation between 
PFOS and lead (ρ = 0.07, p-value = 0.06) and between 
PFHxS and lead (ρ = 0.02, p-value = 0.54)] (Table  S1) 
and the potential overlap in the biological mechanisms 
of their health impacts, we investigated the associations 
between a chemical mixture consisting of PFASs and 
heavy metals and blood lipid levels using Bayesian ker-
nel machine regression (BKMR) and k-means clustering 
methodologies [43, 44].

In the BKMR analysis, which flexibly models non-linear 
exposure–response relationships and interactions among 
exposures [44], we evaluated the cumulative overall asso-
ciations between the chemical mixture and lipid levels 
by predicting outcomes based on simultaneous increases 
or decreases in all the considered chemicals from their 
median values. A Gaussian distribution was applied for 
modeling blood lipid levels in the BKMR models. We also 
estimated the posterior inclusion probabilities (PIPs) for 
each pollutant, which indicate the relative importance 
of individual exposures in contributing to overall effects. 
A PIP of > 0.5 suggests that the inclusion of an exposure 
improves the model fit in more than half of the iterations, 
making it a meaningful predictor. We then explored the 
associations between individual chemicals and lipid lev-
els, holding the concentrations of all other chemicals 
constant at the 25th, 50th, and 75th percentiles, respec-
tively. The BKMR models were adjusted for the same set 
of covariates and implemented using the Markov Chain 
Monte Carlo method with 10,000 iterations. A hierarchi-
cal variable structure was imposed, grouping all PFASs 
together and all heavy metals together [27]. The BKMR 
analyses were conducted using the bkmr package in R 
software.

To complement the supervised machine learning-based 
BKMR approach, we also applied the k-means clustering 
method, a widely used unsupervised dimension reduc-
tion technique. In the k-means clustering analysis, we 
identified actual exposure profiles in this population, 
clustered adolescents with similar pollutant exposure 
patterns, and linked these clusters (with distinguish-
able exposure profiles) to health outcomes. We standard-
ized all PFASs and heavy metals into Z-scores, repeated 
k-means cluster analyses with increasing numbers of 
clusters, and determined the optimal number of clusters 
using the cubic cluster criterion (CCC) and pseudo F sta-
tistics. Since the CCC and pseudo F statistics decreased 
continuously when the number of clusters exceeded two 
(Table  S2), we assigned participants into two clusters 
[45]. We then constructed similar linear regression mod-
els, considering the complex survey design and adjusting 
for the same covariates, while using cluster membership 
instead of individual chemical levels as exposures. The 
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cluster with the lower chemical exposure profile served 
as the reference. These analyses were performed using 
the STANDARD and FASTCLUS procedures in SAS 
software.

We also conducted analyses for secondary binary out-
comes (high TC, high LDL-C, high non-HDL-C, low 
HDL-C, and high TG) using logistic regression models 
(the SURVEYLOGISTIC procedure in SAS software) 
and BKMR models with a probit link function (the bkmr 
package in R software). For the logistic regression mod-
els, we used individual pollutants, as well as the cluster 
memberships identified from k-means clustering, as 
exposures. The covariates and model specifications were 
consistent with those used for continuous lipid level 
analyses.

We performed gender-stratified analyses and evaluated 
the interactions between pollutants and gender by testing 
the product terms of pollutant levels and gender. These 
analyses were conducted because previous studies have 
reported gender-specific differences in the health effects 
of PFAS and heavy metal exposure [39, 40, 45]. Addi-
tionally, disruption of sex hormone homeostasis, such as 
estrogen imbalance, may be one of the underlying mech-
anisms for the associations of PFASs and heavy metals 
with lipid levels [40, 45].

We performed several sensitivity analyses to confirm 
the robustness of the results. First, we repeated the analy-
ses without adjusting for BMI, considering the poten-
tial mediating role of BMI. Second, we adjusted for the 
consumption of big fish and tuna (≤ once/month, 1–3 
times/month, or ≥ once/week) instead of total fish intake. 
Third, we included frozen meal intake (almost none, 1–3 
times/month, once/week, or ≥ twice/week) as an addi-
tional covariate to account for the overall diet quality, 
as a comprehensive diet quality index was not available 
in the KoNEHS dataset. Fourth, we controlled for urine 
dilution effects using the conventional standardization 
method (dividing urine chemical levels by urine creati-
nine levels) instead of the method suggested by O’Brien 
et al. [46]. This allowed for direct comparison with pre-
vious studies that utilized the conventional standardiza-
tion method. Fifth, we assessed mercury exposure using 
blood mercury levels, a commonly used biomarker pri-
marily reflecting methylmercury, instead of urine mer-
cury levels. Blood mercury levels were measured using 
whole blood samples with a gold amalgamation direct 
mercury analyzer (DMA-80, Milestone, CT, USA), with 
a LOD of 0.01 μg/L. One participant had a value below 
the LOD, which was imputed as the LOD divided by the 
square root of two. Sixth, we created a categorized vari-
able for the covariate-adjusted standardized urine cad-
mium levels (below the LOD; greater than or equal to the 
LOD but below the median; and greater than or equal to 

the median) and evaluated the associations of urine cad-
mium levels (categorized variable) with blood lipid lev-
els and dyslipidemia using the same linear and logistic 
regression models, with the ‘below the LOD’ category as 
the reference.

We presented the results from linear regressions 
and BKMR analyses with continuous outcomes as per-
cent (%) changes per doubling of concentrations of 
PFASs and heavy metals, calculated using the formula: 
100× (eβ − 1) , where β represents a regression coef-
ficient. For logistic regressions, results were presented 
as odds ratios (ORs). Since only probit regressions were 
available for binary outcomes in the BKMR analysis, we 
presented regression coefficients from probit regres-
sions (βprobit) for the dyslipidemia outcomes. To increase 
interpretability, we also translated βprobit into the more 
familiar association estimator of OR using the formula: 
OR ≈ e

1.6×βprobit [47, 48]. All analyses were performed 
using SAS (version 9.4, SAS Institute Inc.) and R (version 
4.3.2, R Development Core Team) software.

Results
The mean (± standard deviation) age of the study partici-
pants was 14.6 (± 1.7) years, with 53.6% being female. A 
total of 52.3% of participants had a BMI of 18.5–22.9 kg/
m2, while 20.3% had a BMI of ≥ 25.0 kg/m2. The majority 
of participants had fathers (51.1%) and mothers (50.1%) 
with a college or university education, were never smok-
ers (94.0%), did not experience secondhand smoke expo-
sure (78.0%), and did not drink alcohol (65.4%). The 
geometric mean (± geometric standard deviation) con-
centrations were 3.6 (± 1.6) μg/L for PFOA, 8.0 (± 1.7) 
μg/L for PFOS, 2.4 (± 2.3) μg/L for PFHxS, 0.9 (± 1.5) 
μg/L for PFNA, 0.5 (± 1.4) μg/L for PFDeA, 0.8 (± 1.5) μg/
dL for lead, and 0.3 (± 2.0) μg/L for mercury (Table 1).

Compared to adolescents without any of these condi-
tions (n = 554), those with high TC (n = 36), high LDL-C 
(n = 12), and high non-HDL-C (n = 37) were more likely 
to be female, have a BMI of ≥ 25.0 kg/m2, be exposed to 
secondhand smoke, and were less likely to exercise reg-
ularly. Compared to adolescents without any of these 
conditions, those with low HDL-C (n = 85) and high TG 
(n = 209) were more likely to be male and have a BMI 
of ≥ 25.0 kg/m2 (Table 1).

In the linear regression analyses evaluating one-to-
one associations between each pollutant and outcome, a 
doubling of PFOA levels was associated with a 3.3% [95% 
confidence interval (CI): 0.2, 6.4] increase in LDL-C lev-
els, and a doubling of PFOS levels was associated with a 
2.0% (0.5, 3.4) increase in TC levels. PFNA and PFDeA 
levels were associated with higher TC [2.9% (0.7, 5.2) 
for PFNA; 3.9% (1.6, 6.2) for PFDeA], LDL-C [5.3% 
(1.8, 9.0) for PFNA; 7.6% (3.7, 11.6) for PFDeA], and 



Page 6 of 13Kim et al. Environmental Health          (2024) 23:104 

Table 1 Characteristics of the study participants by dyslipidemia status

Variables Total (n = 818) No 
dyslipidemia 
(n = 554)

High TC (n = 36) High LDL-C 
(n = 12)

High 
non-HDL-C 
(n = 37)

Low HDL-C 
(n = 85)

High TG (n = 209)

Age (year) 14.6 ± 1.7 14.7 ± 1.7 15.2 ± 1.8 15.5 ± 2.0 14.8 ± 1.8 14.6 ± 1.7 14.5 ± 1.7

Gender

 Male 380 (46.5) 239 (43.1) 6 (16.7) 4 (33.3) 12 (32.4) 57 (67.1) 112 (53.6)

 Female 438 (53.6) 315 (56.9) 30 (83.3) 8 (66.7) 25 (67.6) 28 (32.9) 97 (46.4)

Body mass index (kg/m2)

 < 18.5 107 (13.1) 86 (15.5) 3 (8.3) 0 (0) 1 (2.7) 3 (3.5) 17 (8.1)

 18.5–22.9 428 (52.3) 322 (58.1) 15 (41.7) 7 (58.3) 11 (29.7) 30 (35.3) 83 (39.7)

 23.0–24.9 117 (14.3) 70 (12.6) 6 (16.7) 3 (25.0) 8 (21.6) 10 (11.8) 36 (17.2)

 ≥ 25.0 166 (20.3) 76 (13.7) 12 (33.3) 2 (16.7) 17 (46.0) 42 (49.4) 73 (34.9)

Paternal educational level

 ≤ High school 308 (37.7) 204 (36.8) 14 (38.9) 5 (41.7) 16 (43.2) 34 (40.0) 75 (35.9)

 College or uni‑
versity

418 (51.1) 283 (51.1) 18 (50.0) 6 (50.0) 18 (48.7) 47 (55.3) 113 (54.1)

 Graduate school 76 (9.3) 54 (9.8) 4 (11.1) 1 (8.3) 3 (8.1) 4 (4.7) 18 (8.6)

 Missing 16 (2.0) 13 (2.4) 0 (0) 0 (0) 0 (0) 0 (0) 3 (1.4)

Maternal educational level

 ≤ High school 333 (40.7) 223 (40.3) 16 (44.4) 7 (58.3) 18 (48.7) 35 (41.2) 83 (39.7)

 College or uni‑
versity

410 (50.1) 279 (50.4) 15 (41.7) 4 (33.3) 15 (40.5) 41 (48.2) 108 (51.7)

 Graduate school 58 (7.1) 42 (7.6) 4 (11.1) 1 (8.3) 3 (8.1) 6 (7.1) 13 (6.2)

 Missing 17 (2.1) 10 (1.8) 1 (2.8) 0 (0) 1 (2.7) 3 (3.5) 5 (2.4)

Tobacco smoking

 Never smoker 769 (94.0) 525 (94.8) 36 (100.0) 12 (100.0) 37 (100.0) 77 (90.6) 195 (93.3)

 Past smoker 24 (2.9) 13 (2.4) 0 (0) 0 (0) 0 (0) 5 (5.9) 8 (3.8)

 Current smoker 25 (3.1) 16 (2.9) 0 (0) 0 (0) 0 (0) 3 (3.5) 6 (2.9)

Secondhand smoke exposure

 No 638 (78.0) 440 (79.4) 21 (58.3) 8 (66.7) 25 (67.6) 62 (72.9) 166 (79.4)

 Yes 180 (22.0) 114 (20.6) 15 (41.7) 4 (33.3) 12 (32.4) 23 (27.1) 43 (20.6)

Alcohol consumption

 No 535 (65.4) 358 (64.6) 24 (66.7) 7 (58.3) 26 (70.3) 57 (67.1) 142 (67.9)

 Yes 283 (34.6) 196 (35.4) 12 (33.3) 5 (41.7) 11 (29.7) 28 (32.9) 67 (32.1)

Regular exercise

 No 271 (33.1) 190 (34.3) 21 (58.3) 9 (75.0) 19 (51.4) 21 (24.7) 63 (30.1)

 Exercise 
but not to the point 
of sweating

211 (25.8) 144 (26.0) 6 (16.7) 0 (0) 9 (24.3) 25 (29.4) 56 (26.8)

 Sweat‑inducing 
exercise

336 (41.1) 220 (39.7) 9 (25.0) 3 (25.0) 9 (24.3) 39 (45.9) 90 (43.1)

Fish intake

 ≤ Once/month 306 (37.4) 202 (36.5) 18 (50.0) 7 (58.3) 17 (46.0) 38 (44.7) 76 (36.4)

 2–3 times/month 260 (31.8) 178 (32.1) 9 (25.0) 2 (16.7) 9 (24.3) 23 (27.1) 66 (31.6)

 Once/week 142 (17.4) 101 (18.2) 4 (11.1) 1 (8.3) 7 (18.9) 13 (15.3) 37 (17.7)

 ≥ Twice/week 110 (13.5) 73 (13.2) 5 (13.9) 2 (16.7) 4 (10.8) 11 (12.9) 30 (14.4)

 Serum PFOA 
(μg/L)

3.6 ± 1.6 3.6 ± 1.6 3.3 ± 1.5 4.1 ± 1.5 3.6 ± 1.6 3.7 ± 1.6 3.6 ± 1.5

 Serum PFOS 
(μg/L)

8.0 ± 1.7 7.9 ± 1.7 7.9 ± 1.7 8.7 ± 1.7 8.0 ± 1.7 7.7 ± 1.9 8.1 ± 1.7

 Serum PFHxS 
(μg/L)

2.4 ± 2.3 2.4 ± 2.3 1.8 ± 1.7 2.1 ± 1.7 2.1 ± 1.8 2.6 ± 2.3 2.4 ± 2.2
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non-HDL-C levels [3.4% (0.2, 6.7) for PFNA; 4.6% (1.2, 
8.1) for PFDeA]. PFDeA levels were also associated with 
higher HDL-C levels [2.8% (0.2, 5.5)]. A doubling of mer-
cury levels was associated with a 1.6% (0.2, 3.1) increase 
in TC levels and a 2.5% (0.5, 4.6) increase in non-HDL-
C levels (Table  2). In the logistic regression models for 
dyslipidemia, PFNA and PFDeA levels were associated 
with higher odds of high LDL-C (OR = 2.6, 95% CI: 1.3, 
5.3 for PFNA; OR = 3.1, 95% CI: 1.1, 8.8 for PFDeA) and 
lower odds of high TG (OR = 0.7, 95% CI: 0.5, 1.0 for 
PFNA; OR = 0.6, 95% CI: 0.4, 0.9 for PFDeA). Addition-
ally, lead levels were associated with lower odds of high 
TG (OR = 0.7, 95% CI: 0.5, 0.9) (Table S3).

Co-exposure to PFASs and heavy metals was associ-
ated with higher LDL-C levels, but not with other lipid 
levels or dyslipidemia parameters, in the BKMR analy-
sis (Fig. 1). LDL-C levels were estimated to increase by 
1.8% [95% credible interval (CrI): 0.5, 3.1] when con-
centrations of all PFASs and heavy metals were at the 
75th percentile compared to their median values, and 
to decrease by 2.4% (95% CrI: -3.8, -1.0) at the 25th 
percentile (Table  S4). PFDeA was the only pollutant 
which had a PIP value of > 0.5 for predicting LDL-C lev-
els (group PIP: 0.97; conditional PIP: 0.98) (Table  S5). 
A doubling of PFDeA levels was associated with a 
4.3% increase in LDL-C levels (95% CrI: 1.4, 7.3) after 

Table 1 (continued)

Variables Total (n = 818) No 
dyslipidemia 
(n = 554)

High TC (n = 36) High LDL-C 
(n = 12)

High 
non-HDL-C 
(n = 37)

Low HDL-C 
(n = 85)

High TG (n = 209)

 Serum PFNA 
(μg/L)

0.9 ± 1.5 0.9 ± 1.5 1.0 ± 1.4 1.1 ± 1.3 1.0 ± 1.6 0.9 ± 1.6 0.9 ± 1.6

 Serum PFDeA 
(μg/L)

0.5 ± 1.4 0.5 ± 1.4 0.4 ± 1.4 0.5 ± 1.3 0.4 ± 1.5 0.4 ± 1.4 0.4 ± 1.5

 Blood lead (μg/
dL)

0.8 ± 1.5 0.8 ± 1.5 0.7 ± 1.5 0.7 ± 1.4 0.7 ± 1.4 0.8 ± 1.5 0.8 ± 1.5

 Urine mercury 
(μg/L)

0.3 ± 2.0 0.3 ± 2.0 0.3 ± 1.9 0.4 ± 1.6 0.3 ± 1.9 0.3 ± 1.7 0.3 ± 1.9

High TC is defined as TC ≥ 200 mg/dL, high LDL-C as LDL-C ≥ 130 mg/dL, high non-HDL-C as non-HDL-C ≥ 145 mg/dL, low HDL-C as HDL-C < 40 mg/dL, and high TG as 
TG ≥ 130 mg/dL

Categorical variables are expressed as n (%), while continuous variables are represented as the mean ± standard deviation for age, and geometric mean ± geometric 
standard deviation for per- and polyfluoroalkyl substances and heavy metals. Urine mercury concentrations (μg/L) that are not adjusted for urine creatinine levels are 
presented

TC Total cholesterol, LDL-C Low-density lipoprotein cholesterol, non-HDL-C Non-high-density lipoprotein cholesterol, HDL-C High-density lipoprotein cholesterol, 
TG Triglyceride, PFOA Perfluorooctanoic acid, PFOS Perfluorooctane sulfonic acid, PFHxS Perfluorohexane sulfonic acid, PFNA Perfluorononanoic acid, PFDeA 
Perfluorodecanoic acid

Table 2 Percent changes in blood lipid levels per doubling of concentrations of per‑ and polyfluoroalkyl substances and heavy 
metals, estimated from linear regression models

The results were estimated from linear regression models with appropriate strata, cluster, and weight variables, adjusted for age, gender, body mass index, paternal 
educational level, maternal educational level, tobacco smoking, secondhand smoke exposure, alcohol consumption, regular physical exercise, and fish intake. The 
models that considered urine mercury levels as an exposure were additionally adjusted for urine creatinine levels

TC Total cholesterol, LDL-C Low-density lipoprotein cholesterol, non-HDL-C non-high-density lipoprotein cholesterol, HDL-C High-density lipoprotein cholesterol, TG 
Triglyceride, CI Confidence interval, PFOA Perfluorooctanoic acid, PFOS Perfluorooctane sulfonic acid, PFHxS Perfluorohexane sulfonic acid, PFNA Perfluorononanoic 
acid, PFDeA perfluorodecanoic acid

TC LDL-C Non-HDL-C HDL-C TG

Percent (%) 
change

95% CI Percent (%) 
change

95% CI Percent (%) 
change

95% CI Percent (%) 
change

95% CI Percent (%) 
change

95% CI

PFOA 1.8 ‑0.3, 3.9 3.3 0.2, 6.4 2.2 ‑0.8, 5.2 0.8 ‑1.4, 3.1 ‑1.8 ‑7.3, 4.0

PFOS 2.0 0.5, 3.4 1.1 ‑1.7, 4.0 1.9 ‑0.1, 3.9 2.0 ‑0.02, 4.0 3.2 ‑0.7, 7.2

PFHxS 0.02 ‑1.0, 1.0 ‑0.1 ‑1.9, 1.8 ‑0.03 ‑1.6, 1.6 0.02 ‑1.0, 1.1 0.1 ‑3.6, 3.9

PFNA 2.9 0.7, 5.2 5.3 1.8, 9.0 3.4 0.2, 6.7 1.9 ‑0.6, 4.5 ‑2.8 ‑8.4, 3.1

PFDeA 3.9 1.6, 6.2 7.6 3.7, 11.6 4.6 1.2, 8.1 2.8 0.2, 5.5 ‑4.7 ‑11.3, 2.3

Lead ‑0.2 ‑1.8, 1.5 ‑1.0 ‑3.5, 1.7 ‑1.5 ‑3.6, 0.7 2.6 ‑0.2, 5.5 ‑4.3 ‑10.5, 2.4

Mercury 1.6 0.2, 3.1 2.4 ‑0.1, 5.0 2.5 0.5, 4.6 ‑0.4 ‑1.8, 1.0 2.0 ‑2.3, 6.5
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holding the levels of all other pollutants at the 25th, 
50th, or 75th percentiles. No other associations were 
found between pairs of pollutants (PFASs and heavy 
metals) and outcomes (lipid levels and dyslipidemia) 
when controlling for all other pollutants (Table S6).

We identified two contrasting clusters from the 
k-means clustering analysis: one cluster with higher 
levels of PFASs and heavy metals (n = 376) and another 
with lower levels of PFASs and heavy metals (n = 442). 
The geometric mean (± geometric standard deviation) 
levels of PFOA, PFOS, PFHxS, PFNA, PFDeA, lead, 
and mercury were 5.1 (± 1.4) μg/L, 10.7 (± 1.6) μg/L, 
3.7 (± 2.3) μg/L, 1.3 (± 1.4) μg/L, 0.6 (± 1.3) μg/L, 0.9 
(± 1.4) μg/dL, and 0.4 (± 2.0) μg/L, respectively, in the 
high pollutant exposure cluster, and 2.7 (± 1.3) μg/L, 6.2 
(± 1.5) μg/L, 1.6 (± 1.9) μg/L, 0.7 (± 1.4) μg/L, 0.4 (± 1.3) 
μg/L, 0.8 (± 1.5) μg/dL, and 0.3 (± 1.9) μg/L, respec-
tively, in the low pollutant exposure cluster (Fig. S3). 
Compared to adolescents in the low pollutant exposure 
cluster, those in the high pollutant exposure cluster had 
2.5% (95% CI: 0.1, 5.0) higher TC levels. However, no 
precise associations were found for other lipid levels 
and dyslipidemia outcomes, as the wider CIs included 
one (Table 3).

The point estimates of the associations between pol-
lutants and lipid levels were generally greater in boys 
than in girls, although statistically significant interac-
tions between pollutants and gender were not found 
(p-value for interaction ≥ 0.05), except for the interac-
tion between lead and gender regarding LDL-C levels 
(p-value for interaction = 0.04). The point estimates of 
the associations between lead levels and LDL-C levels 
were positive in boys [3.0% (-2.5, 8.7)] and negative in 
girls [-3.9% (-7.8, -0.004)] (Fig. 2; Table S7).

The following sensitivity analyses were conducted: The 
results were robust with minimal change in the analysis 
not adjusted for BMI (Table S8), the analysis adjusted for 
the intake of big fish and tuna instead of total fish intake 
(Tables S9), and the analysis additionally adjusted for fro-
zen meal intake (Table  S10). The results were also con-
sistent in the analysis that controlled for urine dilution 
effects using the conventional standardization method 
(Table  S11), as well as in the analysis that used blood 

Fig. 1 Overall associations between co‑exposures to per‑ and polyfluoroalkyl substances and heavy metals and blood lipid levels, estimated 
using Bayesian kernel machine regression analyses. Abbreviations: TC, total cholesterol; LDL‑C, low‑density lipoprotein cholesterol; non‑HDL‑C, 
non‑high‑density lipoprotein cholesterol; HDL‑C, high‑density lipoprotein cholesterol; TG, triglyceride; CI, confidence interval. Circles represent 
point estimates of the associations, and error bars indicate 95% confidence intervals. The models were adjusted for age, gender, body mass index, 
paternal educational level, maternal educational level, tobacco smoking, secondhand smoke exposure, alcohol consumption, regular physical 
exercise, fish intake, and urine creatinine levels

Table 3 Associations of a pollutant mixture (high vs. low 
exposure cluster) with blood lipid levels and dyslipidemia, with 
clusters identified from k‑means clustering analyses

Dyslipidemia is defined as follows: high TC as TC ≥ 200 mg/dL; high LDL-C as 
LDL-C ≥ 130 mg/dL; high non-HDL-C as non-HDL-C ≥ 145 mg/dL; low HDL-C as 
HDL-C < 40 mg/dL; and high TG as TG ≥ 130 mg/dL

Linear and logistic regression models, with appropriate strata, cluster, and 
weight variables, were used to evaluate the associations of a pollutant mixture 
(high vs. low exposure cluster) with lipid levels and dyslipidemia, respectively. 
High (n = 376) and low (n = 442) exposure clusters were identified from k-means 
clustering analyses. Linear and logistic models were adjusted for age, gender, 
body mass index, paternal educational level, maternal educational level, tobacco 
smoking, secondhand smoke exposure, alcohol consumption, regular physical 
exercise, and fish intake

CI Confidence interval, OR Odds ratio, TC Total cholesterol, LDL-C Low-density 
lipoprotein cholesterol, non-HDL-C non-high-density lipoprotein cholesterol, 
HDL-C High-density lipoprotein cholesterol, TG Triglyceride

Blood lipid parameter Lipid levels Dyslipidemia

Percent (%) 
change

95% CI OR 95% CI

TC 2.5 0.1, 5.0 0.6 0.3, 1.3

LDL‑C 3.6 ‑0.3, 7.6 1.8 0.6, 5.0

Non‑HDL‑C 1.9 ‑1.9, 5.8 0.6 0.2, 1.7

HDL‑C 3.6 ‑0.05, 7.4 0.9 0.5, 1.9

TG ‑2.7 ‑9.9, 5.1 0.7 0.5, 1.2
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mercury levels as exposures (Table  S11). We did not 
find any associations between urine cadmium levels and 
blood lipid levels or dyslipidemia (Table S11).

Discussion
This study was conducted with a representative sample of 
Korean adolescents, whose PFAS and heavy metal levels 
were comparable to or slightly higher than those found 
in adolescents from the United States and European 
countries [29, 49–52]. In the linear regression analyses 
evaluating one-to-one associations, PFOA and PFOS 
levels were associated with higher LDL-C and TC lev-
els, respectively. PFNA and PFDeA levels were associ-
ated with higher levels of TC, LDL-C, and non-HDL-C, 
with PFDeA also linked to higher HDL-C levels. Mercury 
was associated with higher TC and non-HDL-C levels. 
BKMR analyses indicated that co-exposure to PFASs 
and heavy metals was associated with higher LDL-C lev-
els, primarily due to the independent effect of PFDeA. 
K-means clustering analyses revealed that adolescents in 
the high pollutant exposure cluster had higher TC levels 
compared to those in the low pollutant exposure cluster. 
The point estimates of the associations between pollut-
ants and lipid levels were generally greater in boys than 
in girls, although a statistically significant interaction was 
found only between lead and gender regarding LDL-C 
levels.

A systematic review of seven cross-sectional studies 
and five cohort studies conducted among children and 
adolescents found that PFASs, particularly PFOS, were 
associated with higher TC and LDL-C levels, but not with 
HDL-C or TG levels [11]. While we identified some asso-
ciations not supported by previous studies (e.g., the asso-
ciations of PFDeA with higher TC, LDL-C, non-HDL-C, 
and HDL-C levels) [3, 4], the results of the previous stud-
ies and our study suggest that PFAS exposure may lead 

to higher TC and LDL-C levels, which can increase the 
risk of CVD [2]. Meanwhile, studies on the associations 
between heavy metal exposure and lipid profiles are rela-
tively scarce, especially among adolescents, although the 
findings of existing studies generally align with those of 
the present study [53–55]. For example, in a cross-sec-
tional study conducted among United States adolescents 
aged 12–19 years, total blood mercury and methyl mer-
cury levels were reportedly associated with higher TC 
levels, but not with LDL-C, HDL-C, or TG levels [53]. 
Further discussions are presented in the Supplementary 
Material.

Although PFASs and heavy metals share common 
exposure sources (such as dietary factors, including fish) 
[19, 20] and potentially overlapping biological mecha-
nisms [25, 26], to our knowledge, the present study is 
the first to explore the overall associations between co-
exposure to PFASs and heavy metals and lipid levels. 
In the present study, the BKMR analysis revealed that 
the observed association between the PFAS and heavy 
metal mixture and LDL-C levels was primarily driven by 
PFASs, particularly PFDeA, rather than by heavy metals. 
Additionally, the k-means clustering analysis showed that 
adolescents in the cluster with higher levels of PFASs and 
heavy metals had higher TC levels compared to those 
in the cluster with lower levels of these substances. This 
may be explained by the strong discrimination of PFOS 
levels across high and low pollutant exposure clusters 
(Fig. S3), considering the association between PFOS and 
TC identified in the single-pollutant linear regression 
models (Table  2). While BKMR analysis estimates over-
all effects by predicting outcomes based on hypothetical 
simultaneous increases in all considered exposures [49], 
k-means clustering analysis identifies existing expo-
sure profiles in the data and explores the health effects 
associated with these profiles [56]. Therefore, these two 

Fig. 2 Associations of per‑ and polyfluoroalkyl substances and heavy metals with blood lipid levels, stratified by gender. Abbreviations: TC, total 
cholesterol; LDL‑C, low‑density lipoprotein cholesterol; non‑HDL‑C, non‑high‑density lipoprotein cholesterol; HDL‑C, high‑density lipoprotein 
cholesterol; TG, triglyceride; CI, confidence interval; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonic acid; PFHxS, perfluorohexane 
sulfonic acid; PFNA, perfluorononanoic acid; PFDeA, perfluorodecanoic acid. Gray circles and red triangles represent estimated percent changes 
in blood lipid levels per doubling of pollutant concentrations among boys and girls, respectively. Error bars indicate 95% confidence intervals. 
The results were estimated from linear regression models with appropriate strata, cluster, and weight variables, adjusted for age, body mass index, 
paternal educational level, maternal educational level, tobacco smoking, secondhand smoke exposure, alcohol consumption, regular physical 
exercise, and fish intake. The models that considered urine mercury levels as an exposure were additionally adjusted for urine creatinine levels



Page 10 of 13Kim et al. Environmental Health          (2024) 23:104 

approaches capture slightly different aspects of mixture 
effects and can be used complementarily. Furthermore, 
LDL-C constitutes a major portion of TC, and the direc-
tion of the associations with TC and LDL-C was found to 
be the same in both BKMR and k-means clustering analy-
ses, despite differences in the precision of the estimators 
(Tables S4 and 3).

Among the PFASs and heavy metals examined in this 
study, PFDeA was found to be associated with LDL-C 
levels, even when controlling for other pollutants in the 
BKMR analysis. Owing to its resistance to water, stains, 
and heat, PFDeA has been widely used for decades in 
products such as furniture, carpets, outdoor textiles, cos-
metics, and paper food containers [57]. In a study con-
ducted in the Boston area of the United States, plasma 
PFDeA concentrations, but not those of PFOA, PFOS, 
PFHxS, and PFNA, were associated with higher TC and 
LDL-C levels in mid-childhood (median age of 7.7 years) 
[58]. In another study exploring the associations between 
12 PFASs and cardiometabolic markers among Arizona 
firefighters aged 49–54  years, only serum PFDeA lev-
els were associated with blood lipid levels, specifically 
lower TC levels [59]. A study performing untargeted 
metabolomic profiling using blood samples (573 lipid 
and amino acid metabolites) reported that PFDeA levels 
were associated with lipid metabolites among children 
aged 6  years, after correction for multiple comparisons 
[60]. The results of the present study and previous stud-
ies suggest that PFDeA may be a key contributor to the 
observed association between PFAS exposure and lipid 
levels. However, further studies are warranted to confirm 
these findings and inform policy implications, given the 
high correlations among substances (e.g., PFASs), which 
complicate the disentangling of individual pollutant 
impacts and contribute to the instability of the results.

In this study, the point estimates of the associations 
between PFAS and heavy metal levels and lipid levels 
were generally greater in boys than in girls. We postulate 
that this result may be explained by the protective effects 
of estrogen on lipid metabolism [61], which could reduce 
the deleterious effects of pollutants on lipid profiles in 
girls. However, although the impacts of endogenous 
estrogen on lipid metabolism and the related differ-
ences in dyslipidemia and CVD risk by gender are well 
established in epidemiological and mechanistic litera-
ture [61], previous studies have reported heterogeneous 
results regarding gender differences in the associations 
between PFAS and heavy metal exposures and lipid lev-
els. Some studies found more pronounced associations 
between PFAS and heavy metal exposures and lipid lev-
els in boys [11, 12], while other studies reported stronger 
associations in girls [4, 8]. These variations could be due 
to different patterns of confounding structures, selection 

bias, and random error. Because investigating the heter-
ogeneity of the association by gender can shed light on 
the underlying mechanisms and this issue has not been 
fully explored, further research is needed to confirm the 
results while addressing concerns of residual confound-
ing, selection bias, and random error.

Several possible biological mechanisms can be pro-
posed for the findings of this study. Both PFAS and heavy 
metal exposures can induce oxidative stress-related 
hepatotoxicity, which may disrupt hepatic lipid metabo-
lism and increase the risk of poor lipid profiles [13, 62]. 
In addition, both PFASs and heavy metals reportedly can 
affect the endocrine system and disrupt the homeostasis 
of thyroid and sex hormones, which in turn can alter lipid 
levels [23–26]. The potential overlapping mechanisms of 
the impacts of PFAS and heavy metal exposures on lipid 
levels raise the possibility of synergistic effects and/or 
concentration addition for toxicity [18, 19], underscor-
ing the need for mixture analysis to accurately estimate 
the overall effects of co-exposure to these pollutants. 
Furthermore, PFASs may influence the activation of per-
oxisome proliferator-activated receptor alpha, a nuclear 
receptor involved in regulating lipid metabolism in the 
liver [63], leading to changes in lipid levels [64].

Following limitations need to be considered in the 
present study. First, due to the cross-sectional study 
design and the inherent concern of temporal ambigu-
ity between exposures and outcomes, the results of this 
study cannot be interpreted to establish causal rela-
tionships between the considered pollutants and lipid 
profiles. Second, the analyses were performed only on 
adolescents aged 12–17  years, because PFAS and lead 
levels were not measured in children under 12  years 
in the fourth cycle of the KoNEHS. However, a pre-
vious systematic review suggested that the associa-
tions between PFAS exposure and lipid levels (TC and 
LDL-C) may be more prominent among adolescents 
than among younger children, possibly due to rela-
tively higher ingestion and bioaccumulation of PFAS 
in the adolescent group [11]. Third, the participants of 
the present study, who were between 12 and 17  years 
old, may have been at different pubertal stages, which 
could influence lipid levels [65]. However, we could 
not account for these stages, as this information was 
not provided in the KoNEHS data. Fourth, although 
legacy PFASs have been gradually replaced by alterna-
tive (short-chain fluorinated or non-fluorinated) PFASs 
and concerns about these alternatives are growing, 
we considered only five legacy PFASs (PFOA, PFOS, 
PFHxS, PFNA, and PFDeA) due to data availability 
in the KoNEHS. Additionally, previous studies have 
reported associations between various metals, includ-
ing essential metals (e.g., copper, manganese, selenium, 
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and zinc), and lipid levels [12, 13]. However, we evalu-
ated the health effects of only lead and mercury due to 
data limitations. Furthermore, although fish is a com-
mon exposure source for various pollutants, including 
dioxins and polychlorinated biphenyls [66], we could 
not evaluate the effects of these other pollutants on 
lipid levels due to the lack of information in the KoN-
EHS data. Future studies should consider a broader 
range of PFASs, heavy metals, and other pollutants to 
more accurately reflect real-world exposure patterns, 
which are continually changing. Fifth, dietary factors 
can be an important source for PFASs and heavy metals 
and can affect lipid levels as well, potentially acting as 
confounders. However, comprehensive information on 
dietary factors was not available, and a concern about 
residual confounding by dietary factors remains (e.g., 
total energy intake, overall diet quality, and omega-3 
polyunsaturated fatty acids), although we adjusted 
the analyses for fish intake, consumption of big fish 
and tuna, and frozen meal intake [48]. Sixth, given 
the numerous analyses conducted in this study, some 
observed associations may be false positives resulting 
from inflated alpha error caused by multiple testing. 
Consequently, these results should be interpreted with 
caution, taking this limitation into account.

However, the present study also has strengths to 
be acknowledged. First, to our knowledge, this is the 
first study to explore the overall associations between 
co-exposure to PFASs and heavy metals and lipid lev-
els. In addition, although adolescents are considered 
a vulnerable population to environmental pollutants 
[28, 29], research on the health effects of environ-
mental pollutants, including PFASs and heavy metals, 
conducted among adolescents is relatively limited com-
pared to that conducted among other older (e.g., adults 
aged ≥ 65  years) and younger (e.g., infants, preschool-
age children, and school-age children) vulnerable popu-
lations. Second, we leveraged high-quality nationwide 
data representative of Korean adolescents, collected 
under strict survey protocols and quality control proce-
dures [59, 60]. The use of the KoNEHS data allowed us 
to increase the validity, reliability, and generalizability 
of the results by minimizing the possibility of exposure 
and outcome misclassification, confounding bias, and 
selection bias. Third, we employed two mixture analy-
sis methodologies that can capture different aspects of 
mixture effects: the BKMR analysis, which is a super-
vised machine-learning method, and the k-means clus-
tering analysis, which is an unsupervised dimension 
reduction method. These two distinct methodologies 
can act complementarily, offering further insights into 
the impacts of pollutants of interest on lipid profiles in 
realistic scenarios.

Conclusions
PFASs and heavy metals were both individually and 
collectively associated with unfavorable lipid profiles 
in a representative sample of Korean adolescents. Spe-
cifically, in the linear regression analyses, PFOA lev-
els were associated with higher LDL-C levels; PFOS 
with higher TC levels; PFNA with higher TC, LDL-C, 
and non-HDL-C levels; PFDeA with higher TC, LDL-
C, non-HDL-C, and HDL-C levels; and mercury with 
higher TC and non-HDL-C levels. The PFAS and heavy 
metal mixture was associated with higher LDL-C levels, 
primarily driven by the effect of PFDeA, in the BKMR 
analysis. Adolescents in the high pollutant exposure 
cluster showed higher TC levels compared to those in 
the low pollutant exposure cluster in the k-means clus-
tering analysis. Poor lipid profiles during adolescence, 
a common health problem that is increasing in many 
parts of the world, can elevate the risk of various dis-
eases, including CVD, in adulthood. Due to the limita-
tions of this study, such as its cross-sectional design, 
the results should be interpreted cautiously and con-
firmed by future studies before drawing implications 
for public health strategies aimed at reducing the bur-
den of various diseases, including CVD, and promoting 
health during adolescence and later in life.
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