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Abstract
Background Long-term air pollution exposure and inflammation are considered to be associated with cognitive 
decline. However, whether air pollution exposure related cognitive decline is dependent on inflammation remains 
uncertain.

Materials and methods The present study collected data from China Health and Retirement Longitudinal Study 
(CHARLS) at baseline in 2011, with a follow up period in 2015. Concentration of air pollutants (particles with 
diameters ≤ 1.0 μm [PM1], ≤ 2.5 μm [PM2.5], ≤ 10 μm [PM10], nitrogen dioxide [NO2] and ozone [O3]) were obtained 
from China High Air Pollutants (CHAP) dataset. Hypersensitive C-reactive protein (hs-CRP), a systemic inflammation 
marker, was measured in blood of subjects and cognitive function was assessed by standardized questionnaire.

Results A total of 6434 participants were included in the study. Lower exposure to PM2.5, PM1, PM10 and NO2 
were associated with mitigated cognitive decline. The odds ratios (ORs) for air pollutants changes and cognitive 
decline and 95% confidence intervals (CIs) were as follows: PM2.5-0.934(0.925, 0.943), PM1- 0.945 (0.935,0.955), PM10-
0.977(0.972,0.982) and NO2-0.962(0.950,0.975), respectively. Hs-CRP showed no significant correlation with cognitive 
decline or change in levels of air pollution. The interaction regression analyses, both unadjusted and adjusted, 
did not uncover any significant correlation between hs-CRP and air pollution with respect to cognitive decline. 
Bootstrap test exhibited no significant mediating effect of hs-CRP on the relationship between any air pollutants 
and cognitive decline, the indirect effects of hs-CRP in conjunction with exposure to different air pollutants were all 
found to be non-significant, with the following bootstrap CIs and p-values: PM2.5-1.000([1.000,1.000], P = 0.480),PM1-
1.000([1.000,1.000], P = 0.230),PM10-1.000([1.000,1.000], P = 0.650), O3-1.000([1.000,1.000], P = 0.470), ΔNO2-
1.000([1.000,1.000], P = 0.830) .

Conclusion Ambient air pollution exposure was linked to cognitive decline independent of hs-CRP level.
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Background
Dementia, a cognitive disorder, is a devastating neuro-
logical condition seen in older adults, affecting individ-
uals, families and imposing a significant public health 
cost. According to a report by World Health Organiza-
tion (WHO), the global population affected by dementia 
is estimated to reach 131.5 million by 2050 [1]. Multiple 
studies have reported the increased risk of incident 
dementia with exposure to air pollution. Indoor air pol-
lution arising out of household fuel use in China has been 
linked to cognitive deficits, a trend observed in other 
low and middle-income countries including India [2, 3]. 
A systematic review reported exposure to air pollution 
with elevated risks of cognitive impairment in adults, and 
dementia in older adults [4], indicating a potential impact 
of air pollution on cognitive health across the life-course. 
Though, epidemiological studies have shown a strong 
association between air pollution and cognitive disorder, 
the underlying mechanism is largely unknown.

Recent research has sparked interest in understand-
ing the role of neuroinflammation and oxidative stress 
as potential mechanisms linking air pollution with neu-
ropsychiatric disorders [5]. Neuroinflammation activates 
abnormal microglia releasing excessive inflammatory 
cytokines and chemokines, causing neuronal death and 
cognitive impairment [6]. C-reactive protein (CRP, or 
hypersensitive CRP), acknowledged as a marker indicat-
ing persistent chronic systemic inflammation, has been 
demonstrated to be associated with the progression of 
atherosclerosis. Elevated levels of CRP have been linked 
to an augmented risk of cardiovascular disease (CVD)-
related events and mortality [7, 8]. Several observational 
studies have indicated a positive relationship between 
CRP levels and dementia [9]. High plasma CRP level was 
associated with accelerated cognitive decline in Chinese 
elderly mild cognitive impairment patients [10]. How-
ever, contrary findings exist, as several studies have indi-
cated lower plasma C-reactive protein (CRP) levels in 
patients with Alzheimer’s disease (AD) [11, 12]. Further-
more, some studies have reported a lack of significant 
association between CRP and dementia [13, 14]. The dis-
crepancies in results regarding the relationship between 
CRP and cognitive decline are likely attributed to varia-
tions in the studied populations. To better understand 
whether CRP levels are associated with cognitive decline 
in populations exposed to air pollution, additional inves-
tigation is warranted.

Several studies have presented that air pollution 
exposure influences inflammation-related protein level 
(interferon-gamma and IL-12B, IL-8), and increases 

proinflammatory cytokines (monocyte chemoattractant 
protein 1) and inflammatory response that characterized 
by elevated circulating cluster of differentiation level [15, 
16]. In a previous population study, a positive correlation 
was observed between air pollution and CRP [17]. How-
ever, this conclusion did not hold true in certain other 
observational studies [18, 19]. The connection between 
air pollution and inflammation seems to fluctuate based 
on the specific air pollutants, the studied population, 
and the inflammatory markers investigated. Moreover, 
the impact of systemic inflammation on the correlation 
between air pollution and cognitive dysfunction is not 
firmly established. Consequently, in this study, we inves-
tigated the impact of air pollutants exposure on cognitive 
function under varying inflammatory state (indicated by 
hs-CRP levels) in middle-aged and elderly Chinese, and 
explore the effect of hs-CRP on the relationship between 
air pollution and cognitive decline. We aim to figure out 
whether cognitive decline attributed to air pollution is 
influenced or mediated by hs-CRP levels.

Materials and methods
Study population
The data set was derived from China Health and Retire-
ment Longitudinal Study (CHARLS), a multistage-strat-
ified longitudinal study, which recruited middle- and 
old-aged community-dwelling residents from 450 villages 
in 150 counties of 28 provinces in China. The detailed 
design of CHARLS is described elsewhere [20]. In sum-
mary, the baseline survey was conducted in 2011, with 
a small subset of participants completing the survey in 
2012. Follow-up interviews were conducted in 2013, 2015 
and 2018. Due to the absence of blood sample data in 
the CHARLS surveys from 2013 to 2018, this study has 
opted to utilize the CHARLS 2015 dataset for the analy-
sis. Individuals were excluded if they met one or more of 
the following criteria: (1) lack of community information; 
(2) age < 45 years; (3) missing data on cognitive function 
score, CRP levels, demographic and covariates informa-
tion; and (4) attrition during the follow-up period. The 
flowchart of patient enrollment is shown in Fig. 1. A total 
of 17,708 individuals from the wave of 2011–2012 were 
initially included in the study. Of these, 9,348 individu-
als were excluded during the baseline screening, and an 
additional 1,906 individuals were excluded during the 
follow-up period based on the exclusion criteria. Finally, 
6434 individuals were included in the analyses. This study 
was approved by Ethics Review Committee of Peking 
University. All subjects provided informed consent.

Keywords Air pollution, Cognitive function, Systemic inflammation, Hypersensitive C-reactive protein, CHARLS, 
Particulate matter
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Cognitive function
The participants underwent a telephonic interview for 
assessing their cognitive status (TICS) The TICS deter-
mined by scoring three aspects of cognitive health i.e., 
orienting attention (0–10 points), episodic memory 
(0–10 points) and visuoconstruction (0–1 points). The 
total score of cognitive function ranges from 0 to 31 
points, with higher scores implying higher cognition. The 
TICS is a widely used and standardized methodology for 
assessing cognitive function in various research studies 
[21, 22].

Inflammation marker
We measured serum hypersensitive CRP (hs-CRP) as 
the inflammation marker. Fasting venous blood sample 
was collected from respondents by trained staff from the 
local Chinese Center for Disease Control (China CDC) 
and preserved in 0.5 mL cryovials at − 20  °C− 80  °C. All 
the samples were delivered to Beijing CDC within 2 
weeks and measured with immunoturbidimetric assay 
in the Clinical Laboratory of Capital Medical Univer-
sity. The sampling and measurements were followed 
adopting CDC manual about blood collection and han-
dling [23]. The high sensitivity CRP test had a detection 
limit ranging from 0.1 to 20  mg/L. The coefficient of 
variation within the assay for high sensitivity CRP was 
less than 1.3%, indicating low variability in the results. 

Additionally, the coefficient of variation between differ-
ent assays was less than 5.7%, indicating consistent and 
reliable measurements. Systemic inflammation is defined 
as CRP ≥ 3 mg/L levels.

Air pollution exposure assessments
Ground-level air pollution concentrations for 2011 and 
2015, namely particles with diameters ≤ 1  μm (PM1), 
particles with diameters ≤ 2.5  μm (PM2.5), particles with 
diameters ≤ 10  μm (PM10), nitrogen dioxide (NO2) and 
ozone (O3), were collected from the China High Air Pol-
lutants (CHAP) dataset (available at  h t t  p s : /  / w e  i j  i n g - r s 
. g i t h u b . i o / p r o d u c t . h t m l     ) , which has been successfully 
applied in several studies on the impact of air pollu-
tion on public health, such as metabolic syndrome and 
physical function [24, 25]. The air pollution exposure 
assessment was executed through a sophisticated, multi-
pronged strategy that amalgamated satellite-derived spa-
tiotemporal data with on-ground air quality surveillance, 
meteorological parameters, and land use patterns. This 
robust methodological framework facilitated the precise 
prediction of daily exposures to fine particulate matter 
with diameters ≤ 1 μm (PM1) and ≤ 2.5 μm (PM2.5), utiliz-
ing a high spatial resolution of 0.01° × 0.01°. In estimat-
ing PM1 and PM10 concentrations, we adopted a hybrid 
approach, merging satellite-derived data with mea-
surements from ground-based air quality monitoring 

Fig. 1 The flowchart of patient enrollment
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stations. The data from these stations were meticulously 
collected and analyzed in accordance with the proto-
cols established by the State Environmental Protection 
Administration of China (1992), thereby bolstering the 
credibility of our exposure assessments. Daily concentra-
tions for PM10, nitrogen dioxide (NO2), and the 8-hour 
average for ozone (O3) were calculated from continuous 
hourly readings throughout the day, ensuring that at least 
75.0% of 1-hour data points were available to secure reli-
able estimates. The air monitoring stations are located 
within the residential areas of each study participant, at 
a considerable distance from major traffic roads, gas sta-
tions, industrial fuel exhaust outlets, and landfills.

The details on air pollution estimation were described 
in previous study [26–28].

Covariates
Standard self-administered questionnaire in CHARLS 
was used to collect sociodemographic information, life-
style behaviors, health status information, and other data. 
We considered the potential confounding variables in the 
analysis as following: (1) socio-demographic characteris-
tics including age (continuous), sex (male/female), birth-
place (urban/rural), education level (junior high school 
and below/high school and above) and Regional Per Cap-
ita Gross Domestic Product (GDP). (2) lifestyle behav-
iors, including sleep time (continuous), smoking (yes/
no), current alcohol consumption (never/> 1 time per 
month/< 1 time per month ), physical activity (0 indicates 
missing value, 1 indicates walking for at least 10 min con-
tinuously per week, 2 indicates moderate physical activ-
ity for at least 10 min continuously per week, 3 indicates 
vigorous physical activity for at least 10 min continuously 
per week), cooking fuel use (clean fuel/ solid fuel) and 
heating fuel use (clean fuel/ solid fuel). (3) health status-
related variables, including numbers of types of chronic 
diseases (medical history, such as hypertension, dyslipid-
emia, diabetes, cancer, chronic lung disease, liver disease, 
chronic heart disease, stroke, chronic kidney disease, 
stomach disease, emotional problem, memory related 
disease, rheumatism, or asthma. score of 0 indicates no 
chronic disease, 1 indicates one chronic disease, 2 indi-
cates two chronic diseases, and 3 indicates more than 
two chronic diseases), brain injury (yes/no) and hearing 
loss (yes/no).

Statistical analysis
Descriptive analyses were conducted for population 
characteristics. Continuous variables were described as 
the mean ± standard deviation (SD) and categorical vari-
ables were presented as frequencies and percentages. For 
evaluation, absolute changes of air pollutants (etc. ΔPM1, 
ΔPM2.5, ΔPM10, ΔO3, and ΔNO2) were defined as follows: 
Δambient air pollutants = ambient air pollutants in 2011 

– ambient air pollutants in 2015. The absolute change in 
cognitive function in individual was calculated as follows: 
Δcognitive function = cognitive function score 2011–cog-
nitive function score 2015. Cognitive decline was deter-
mined as a positive difference (Δ cognitive function 
score > 0) between the 2011 and 2015 cognitive function 
assessments; null or negative changes (Δ cognitive func-
tion score ≤ 0) indicated “without cognitive decline”. Chi-
square test, Student’s t-test or Wilcoxon test were used to 
compare the differences between cognitive decline group 
and without cognitive decline group.

Logistic regression models were applied to examine 
the effects of air pollution change and CRP on cognitive 
decline, and the interaction between air pollution and 
CRP on cognitive decline. Both unadjusted and adjusted 
models were employed in the analyses. Model 0 was 
unadjusted, model 1 was adjusted for age, sex, birthplace 
and education level, Model 2 was adjusted for age, sex, 
birthplace, education level, smoking, cooking fuel use 
and heating fuel use. Spearman’s correlation analysis 
was conducted to investigate the correlation coefficients 
between hs-CRP and ambient air pollutants. The effect 
estimates were presented as the odds ratio (OR) and 95% 
confidence intervals (95% CI) We further performed 
stratified regression analyses based on hs-CRP levels, cat-
egorizing as < 3 mg/L or ≥ 3 mg/L, to explore the poten-
tial influence of varying hs-CRP levels on the association 
between air pollution and cognitive decline.

Furthermore, the unadjusted and adjusted interac-
tion regression analyses were used to examine whether 
the interaction effects of hs-CRP and air pollution on 
cognitive function. In addition, we conducted stratified 
regression analyses by several key covariates, including 
smoking status, use of cooking fuels, heating fuels, and 
sex, to assess their individual impacts on this relation-
ship. Moreover, to ascertain whether hs-CRP, considered 
both as a continuous and categorical variable (< 3  mg/L 
or ≥ 3  mg/L), serves as a mediator in the relationship 
between air pollution exposure and cognitive decline, we 
employed the bootstrap method to rigorously test for this 
mediation effect. Data analyses were conducted using the 
SPSS 26.0 (Statistical Package for the Social Science, Chi-
cago, IL, USA) and R 3.4.1 (Lucent Technologies, USA). 
A two-tailed P value < 0.05 was regarded as statistically 
significant.

Results
Demographics of the study population
The population characteristics were shown in Table  1. 
The individuals span across 186 villages or towns 
throughout the country (Fig.  2). The mean age of the 
population was 58.89 ± 8.64 years and 3904 participants 
showed impaired cognitive status. Females, individu-
als living in rural areas, and those with lower levels of 
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education exhibited a higher proportion of cognitive 
decline. Lifestyles factors, such as smoking or the use of 
solid fuels for cooking or heating, were associated with 
increased cognitive decline.

Association of air pollution and cognitive decline
Numeric range of cognitive function score and the air 
pollutants exposure changes from 2011 to 2015 were 
presented in Supplementary data. Overall, the par-
ticipants experienced an average decline of 1.64 ± 4.95 
points in their total cognitive function score, with par-
ticular impact observed in the areas of orienting atten-
tion (1.09 ± 2.53 points) and episodic memory (0.5 ± 3.89 
points) (Supplementary Table 1, Supplementary Fig.  1). 

For the 2011 baseline, the air pollutant exposure lev-
els were: PM2.5 at 53.01 µg/m3 ± 15.08, PM1 at 40.18 µg/
m3 ± 13.24, PM10 at 93.64  µg/m3 ± 26.95, O3 at 95.13  µg/
m3 ± 6.60, and NO2 at 29.03  µg/m3 ± 10.53. (Supplemen-
tary Table 2). And the general air pollutants exposure 
(PM1, PM10 and O3) decreased from 2011 to 2015, while 
PM2.5 and NO2 presented a slightly increase (Supplemen-
tary Table 3).

The associations between each air pollutant changes 
and cognitive decline are described in Fig.  3. Lower 
exposure to PM2.5, PM1, PM10 and NO2 were signifi-
cantly related to mitigated cognitive decline, with the 
OR (95% CI) for 0.934(0.925, 0.943), 0.945(0.935, 0.955), 
0.977(0.972, 0.982) and 0.962(0.950, 0.975), respectively. 

Table 1 Population characteristics
Characteristics Total (n = 6434) Without cognitive decline (n = 2530) Cognitive decline (n = 3904) P-value
Age, years 58.89 ± 8.64 59.37 ± 8.81 58.14 ± 8.31 < 0.001
Sex < 0.001
 Female 3404(52.91) 1405(55.53) 1999(51.20)
 Male 3030(47.09) 1125(44.47) 1905(48.80)
Birthplace < 0.001
 Rural 4356(67.70) 1633(64.55) 2723(69.75)
 Urban 2078(32.30) 897(35.45) 1181(30.25)
Education level 0.002
 Junior high school and below 4646(72.21) 1881(74.35) 2765(70.82)
 High school and above 1788(27.79) 649(25.65) 1139(29.18)
Sleep time per day, hours 6.00(5.00,8.00) 6.00(5.00,8.00) 6.00(5.00,8.00) 0.599
Smoking 2526(39.26) 912(36.05) 1614(41.34) < 0.001
Cooking fuel use 0.003
 Clean fuel 2557(39.74) 1063(42.02) 1494(38.27)
 Solid fuel 3877(60.26) 1467(57.98) 2410(61.73)
Heating fuel use < 0.001
 Clean fuel 2613(40.61) 1109(43.83) 1504(38.52)
 Solid fuel 3821(59.39) 1421(56.17) 2400(61.48)
Brain injury 147(2.28) 60(2.37) 87(2.23) 0.709
Hearing lossa 495(7.69) 181(7.16) 314(8.05) 0.194
Alcohol consumption 0.814
 > 1 time/month 4322(67.17) 1710(67.59) 2612(66.91)
 < 1 time/month 495(7.69) 195(7.71) 300(7.68)
 Never 1617(25.13) 625(24.70) 992(25.41)
Physical Activitya 0.828
 0 278(4.32) 119(8.94) 159(8.87)
 1 645(10.02) 265(19.91) 380(21.21)
 2 933(14.50) 398(29.90) 535(29.85)
 3 1267(19.69) 549(41.25) 718(40.07)
Number of chronic diseases 0.244
 0 2000 (31.10) 752(29.72) 1248(31.97)
 1 1955 (30.40) 773(30.55) 1182(30.28)
 2 1297 (20.20) 522(20.63) 775(19.85)
 ≥ 3 1182 (18.40) 483(19.09) 699(17.90)
Regional Per Capita GDP(CNY) 35711.00(29608.00 ,

52763.00)
33480.00(29608.00 ,
51768.00)

33480.00(29608.00 ,
51768.00)

0.160

Note: For continuous variables, numbers represent the mean ± standard deviation and for categorical variables, numbers represent count (percentage). a Starsymbol 
indicates missing data
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Similar results were observed when adjusted for age, sex, 
birthplace, education level, smoking, cooking and heating 
fuel use. This main finding was also validated in the uni-
variate linear regression analysis (Supplementary Table 
4). However, the exposure level change of O3 showed no 
relationship with cognitive decline.

Association between hs-CRP and cognitive decline, and 
the interaction of hs-CRP with air pollution on cognitive 
decline
We did not observe any statistical significance between 
hs-CRP and cognitive decline (Supplementary Table 
5), nor find a statistical correlation between air pollu-
tion exposure changes and hs-CRP (Supplementary 
Table 6). No significant interactions of hs-CRP and air 

pollutants changes on cognitive decline were observed, 
the OR (95%CI) for hs-CRP with ΔPM2.5, ΔPM1, 
ΔPM10 and ΔO3 were 1.001([0.999,1.002] P = 0.331), 
1.001([0.999,1.002] P = 0.568), 1.000([1.000,1.001] 
P = 0.304) and 0.999([0.998,1.001] P = 0.304), respectively, 
as well as in the adjusted model for age, sex, birthplace, 
education level, smoking, cooking and heating fuel use. 
Levels of hs-CRP appeared to have slightly interactive 
association with ΔNO2 on cognitive decline (OR: 1.002, 
(95% CI: 1.000, 1.004). However, this association was nul-
lified in when adjusted for age, sex, birthplace, education 
level, smoking, cooking and heating fuel use (P = 0.055). 
(Supplementary Table 5)

Fig. 2 The distribution map of the survey points for individuals included
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The interaction of hs-CRP with air pollution on cognitive 
decline among different population
We observed that decreased exposure of PM2.5, PM1, 
PM10 and NO2 were more likely to alleviate cognitive 
decline, independent of stratified hs-CRP level. Exposure 
to O3 showed no association with cognitive decline strati-
fied by different hs-CRP level. (Supplementary Fig. 2)

When further stratified by the sex, smoking, cook-
ing and heating fuel use analyses, no significant inter-
actions was observed between hs-CRP and ΔPM2.5, 
ΔPM1, ΔPM10 and ΔO3 on cognitive decline. However, 

a significant interaction of CRP with ΔNO2 on cogni-
tive decline was found in male and population cooking or 
heating using solid fuels. (Supplementary Table 7)

The mediating role of hs-CRP on the relationship between 
air pollution and cognitive decline
The bootstrap test results for mediation analysis are 
shown in Table 2. No significant mediating effect of hs-
CRP on the relationship between air pollution and cog-
nitive decline was observed, and the indirect effect of 
hs-CRP with any of the air pollutants was non-significant: 

Table 2 The mediating role of hs-CRP on the relationship between air pollution and cognitive decline
hs-CRP(continuous) hs-CRP(categorical ≥ 3 mg/L)
OR-(95%CI) P-value OR-(95%CI) P-value

ΔPM2.5*hs-CRP
 Indirect 1.000 ( 1.000, 1.000 ) 0.480 1.000 ( 1.000, 1.000 ) 0.990
 Direct 0.984 ( 0.981, 0.990 ) < 0.001 0.984 ( 0.981, 0.990 ) < 0.001
ΔPM1*hs-CRP
 Indirect 1.000 ( 1.000, 1.000 ) 0.230 1.000 ( 1.000, 1.000 ) 0.920
 Direct 0.987 ( 0.984, 0.990 ) < 0.001 0.987 ( 0.984, 0.990 ) < 0.001
ΔPM10*hs-CRP
 Indirect 1.000 ( 1.000, 1.000 ) 0.650 1.000 ( 1.000, 1.000 ) 0.930
 Direct 0.995 ( 0.994, 1.000 ) < 0.001 0.995 ( 0.994, 1.000 ) < 0.001
ΔO3*hs-CRP
 Indirect 1.000 ( 1.000, 1.000 ) 0.470 1.000 ( 1.000, 1.000 ) 0.950
 Direct 1.000 ( 0.998, 1.000 ) 0.940 1.000 ( 0.998, 1.000 ) 0.960
ΔNO2*hs-CRP
 Indirect 1.000 ( 1.000, 1.000 ) 0.830 1.000 ( 1.000, 1.000 ) 0.960
 Direct 0.991 ( 0.987, 0.990 ) < 0.001 0.991 ( 0.987, 0.990 ) < 0.001

Fig. 3 Association of air pollutants changes from 2011 to 2015 with cognitive decline. Model 0 are unadjusted (no covariates). Model 1 adjusted for age, 
sex, birthplace and education level. Model 2 adjusted for age, sex, birthplace, education level, smoking, cooking fuel use and heating fuel use
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ΔPM2.5-P = 0.480, ΔPM1-P = 0.230, ΔPM10-P = 0.650, ΔO3 
-P = 0.470, ΔNO2-P = 0.830. Meanwhile, the negative 
effect persisted when the hs-CRP was further analyzed as 
a categorical variable (≥ 3 mg/L) (Table 2).

Discussion
This study presents the first nation-wide comprehensive 
assessment of the association between ambient air pollu-
tion, inflammation and cognitive changes among Chinese 
middle-aged and older adults. We found that exposure 
to PM2.5, PM1, PM10 and NO2 were significantly associ-
ated with the cognitive function, improving air pollu-
tion exposure could alleviate cognitive decline. Hs-CRP 
showed no direct significant correlation with cognitive 
decline or air pollution exposure level in our present 
study. The association between air pollution and cogni-
tive decline was independent of hs-CRP level.

Studies have linked air pollution with cognitive decline 
but with contrasting findings as regarded to different 
pollutants and population. One Swedish National study 
on Aging and Care in Kungsholmen found an inverted 
U-shape relationship between PM2.5 and cognitive 
decline, low to mean PM2.5 levels were associated with 
higher risk of accelerated cognitive decline [29]. Tzivian 
et al. reported a significant dose-dependent relationship 
between chronic exposure to PM2.5 and the likelihood 
of mild cognitive impairment, noting a 16% heightened 
risk [30]. A community health study of California, US for 
individuals ≥ 45 years of age showed verbal fluency wors-
ened by 21% as increase in PM2.5 per 10  µg/m3, while 
verbal fluency and executive function worsened by 19% 
with increase in O3 every 10 ppb [31]. A cohort study in 
England (aged 50–79 years) found a positive exposure-
response relationship between dementia and PM2.5, NO2, 
but not O3 [32]. Zhejiang Major Public Health Surveil-
lance (ZJMPHS) in China (7,311 participants, aged ≥ 60 
years) demonstrated that encounters with PM2.5, PM10, 
and sulfur dioxide (SO2) are associated with a modest 
yet significant elevation in cognitive impairment risk, 
ranging from 3 to 4%. However, no such association was 
observed with nitrogen dioxide (NO2), ozone (O3), or the 
overall air quality index [33]. Our study also found a sig-
nificant association between air pollution changes and 
cognitive decline which is consistent with previous find-
ings. Particulate matter exposure seemed to be more cer-
tainly associated with cognitive decline regardless of their 
country of origin or age group, following by NO2, but not 
with O3. While the effect of O3 exposure on cognitive 
function remained inconclusive, more population-based 
study will be needed.

Inflammation has been considered as a risk factor for 
neurodegenerative and cognitive changes in the aging 
population. Certain population studies have revealed a 
noteworthy association between CRP or hs-CRP and 

cognitive function, including recognition memory and 
visuospatial impairment [34, 35]. Systematic reviews 
have consistently indicated that elevated concentrations 
of CRP are linked to an elevated risk of cognitive impair-
ment [36]. Inflammatory markers like CRP can pro-
spectively predict poorer cognitive function and faster 
cognitive decline over time [37]. However, other studies 
demonstrated a minor or virtually nonexistent associa-
tion between CRP and cognitive function [38, 39]. Mean-
while, study also have noted that CRP only affects the 
memory function performance [40]. Higher baseline hs-
CRP or CRP levels are associated with poorer memory 
function or elevated risk of cognitive memory decline 
[41–43]. In this study, a high hs-CRP level did not show a 
significant increase in the risk of cognitive decline among 
the middle-aged and older population exposed to air pol-
lution. The inconsistency in these results may be attrib-
uted to variations in the characteristics of the studied 
populations and the diverse methods employed to assess 
cognitive function across studies. However, this raises 
speculation that hs-CRP levels may not influence the 
association between cognitive decline and air pollution.

A previous study found that short-term exposure to 
PM2.5 was associated with higher circulating CRP, a 5 µg/
m3 increase in the 5-day moving average of fine PM2.5 
was linked to a 4.2% increase in circulating CRP [17]. 
While other studies also indicated negative relation for 
PM2.5 and NO2 exposure with CRP or hs-CRP [18, 19]. 
Our study revealed no significant association between 
the baseline level of hs-CRP and changes in exposure 
concentrations of any air pollutants. Given the com-
plexity and continual fluctuations in both inflammation 
states and air pollution exposure, it becomes challenging 
to establish a clear relationship between them over the 
long-term. Different pollutants may induce distinct alter-
ations in specific inflammation markers.

Meanwhile, hs-CRP played no modification or mediat-
ing role in the relationship between ambient air pollution 
exposure and cognitive decline in this study. This finding 
partially aligns with another study utilizing the CHARLS 
dataset, indicating a significant relationship between 
solid fuel use and white blood cell (WBC) levels, but not 
with hs-CRP. Moreover, hs-CRP did not serve as a medi-
ator in the association between solid fuel use and out-
comes related to depression or cognition [44]. Another 
longitudinal study from China reported that low cogni-
tive function was linked to an elevated risk of all-cause 
mortality independently of hs-CRP concentration. How-
ever, it was noted that in males, there was an increased 
risk of all-cause mortality [45], suggesting that hs-CRP 
may not exacerbate cognitive decline, but gender could 
play a significant role. Stratified analyses revealed signifi-
cant interactions for ΔNO2 with hs-CRP only in males 
and the population using solid fuels. This suggests that 
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being male and using solid fuels might be the primary 
factors influencing the relationship between NO2 expo-
sure and cognitive decline, irrespective of hs-CRP levels. 
Therefore, it is reasonable to conclude that the associa-
tion between air pollution and cognitive decline appears 
to be independent of hs-CRP levels. In the presence of 
underlying ambient air pollution, systemic inflammation 
may not directly mediate or facilitate cognitive decline.

Given the intricate pathological mechanisms involved 
in cognitive decline, pinpointing the key factors respon-
sible for cognitive changes related to underlying air pol-
lution exposure poses a considerable challenge. Studies 
have documented that exposure to PM2.5 induces mito-
chondrial dysfunction, neuronal and neurovascular dys-
function, along with elevated levels of amyloid beta and 
tau phosphorylation. These factors may contribute to 
the development of Alzheimer’s disease. Further, oxida-
tive stress and the oxidative stress-sensitive transient 
receptor potential melastatin 2(TRPM2) channel play 
important roles in the process [46]. PM2.5 particles gen-
erate reactive oxygen species, leading to oxidative dam-
age in the central nervous system, ultimately accelerating 
cognitive dysfunction [47]. Studies also have brought up 
that genetic status can modify the effect of air pollution 
on cognitive function, such as polymorphisms in apoli-
poprotein E allele (ApoE4 variants) and hemochromato-
sis gene (HFE C282Y variant) [4]. Perhaps these findings 
may provide us with some valuable insights for future 
research endeavors.

There are also some limitations in our study. Firstly, 
due to limited data availability, only baseline hs-CRP 
data were utilized in the analysis. Given the variability 
of inflammation across different states, it is crucial to 
acknowledge that a single phase of inflammation may 
not capture the entire long-term process. Future studies 
may benefit from considering changes in inflammation 
and incorporating longer follow-up periods. Additionally, 
while hs-CRP is considered one of the better markers of 
inflammation, including other inflammatory indicators 
such as WBC and interleukin would enhance the robust-
ness of the conclusions.

In conclusion, our study revealed an association 
between long-term ambient air pollution exposure and 
cognitive decline in Chinese middle-aged and older 
adults. As air quality improved, cognitive decline showed 
varying degrees of mitigation across different air pollut-
ants. Importantly, we did not observe a significant asso-
ciation between the inflammation marker hs-CRP and 
cognitive decline, nor with changes in air pollution expo-
sure levels. The link between air pollution and cognitive 
decline appeared independent of hs-CRP levels. This 
may give us some hints that systemic inflammation alone 
might not be solely responsible for, or might not signifi-
cantly exacerbate, the progression of cognitive decline in 

individuals who have been exposed to prolonged air pol-
lution. There may be other factors at play in this intricate 
process.
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