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Abstract 

Background  Ambient air pollution is a known risk factor for several chronic health conditions, including pulmo-
nary dysfunction. In recent years, studies have shown a positive association between exposure to air pollutants 
and the incidence, morbidity, and mortality of a COVID-19 infection, however the time period for which air pollution 
exposure is most relevant for the COVID-19 outcome is still not defined. The aim of this study was to analyze the dif-
ference in association when varying the time period of air pollution exposure considered on COVID-19 infection 
within the same cohort during the first wave of the pandemic in 2020.

Methods  We conducted a cross-sectional study analyzing the association between long- (10- and 2-years) and short-
term (28 days, 7 days, and 2 days) exposure to NO2 and PM2.5 on SARS-CoV-2 incidence, morbidity, and mortal-
ity at the level of county during the first outbreak of the pandemic in spring 2020. Health data were extracted 
from the German national public health institute (Robert-Koch-Institute) and from the German Interdisciplinary Asso-
ciation for Intensive Care and Emergency Medicine. Air pollution data were taken from the APExpose dataset (version 
2.0). We used negative binomial models, including adjustment for risk factors (age, sex, days since first COVID-19 case, 
population density, socio-economic and health parameters).

Results  We found that PM2.5 and NO2 exposure 28 days before COVID-19 infection had the highest association 
with infection, morbidity as well as mortality, as compared to long-term or short-term (2 or 7 days) air pollutant expo-
sure. A 1 μg/m3 increase in PM2.5 was associated with a 31.7% increase in incidence, a 20.6% need for ICU treatment, 
a 23.1% need for mechanical ventilation, and a 55.3% increase in mortality; an increase of 1 μg/m3 of NO2 was associ-
ated with an increase for all outcomes by 25.2 – 29.4%.

Conclusions  Our findings show a positive association between PM2.5 and NO2 exposure and the clinical course 
of a SARS-CoV2 infection, with the strongest association to 28 days of exposure to air pollution. This finding provides 
an indication as to the primary underlying pathophysiology, and can therefore help to improve the resilience of socie-
ties by implementing adequate measures to reduce the air pollutant impact on health outcomes.

Trial registration  Not applicable.
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Background
Ambient air pollution is a significant driver of morbid-
ity and mortality in Germany. For the year 2018, the 
European Environment Agency attributed 63,000 pre-
mature deaths in Germany to particulate matter (PM) 
and 9,000 premature deaths to nitrogen dioxide (NO2) 
[1]. The Institute for Health Metrics and Evaluation esti-
mated that air pollution was the 10th greatest health risk 
in Germany in 2019, with 29,252 attributable deaths or 
3.05% of all deaths, while Lelieved et  al. estimated that 
11,000 deaths annually in Germany are attributable to 
road traffic emissions alone [2, 3]. Since the outbreak of 
the COVID-19 pandemic, a growing body of research has 
looked at the association between exposure to air pollut-
ants and COVID-19 incidence, mortality and morbid-
ity, showing that exposure to air pollution could affect 
COVID-19 morbidity and mortality through multiple 
potential mechanisms (Fig. 1) [4].

Over the long-term, exposure to air pollution increases 
the risk and severity of several chronic health conditions, 
including pulmonary, cardiovascular, and renal diseases, 
as well as obesity, diabetes, and cognitive decline, all of 
which are known risk factors for a more severe outcome 
in COVID-19 patients [5–8]. Upon inhalation air pol-
lutants can cause oxidative stress and increase the con-
centration of reactive oxygen species (ROS), thereby 
damaging the epithelial lining fluid in the respiratory 
tract, which causes an inflammatory state in the lung tis-
sue and thereby increases the risk for heightened inflam-
mation during COVID-19 illness [9, 10]. Some research 

has indicated that over shorter time scales, viruses may 
be able to attach to PM and thereby stay airborne for a 
longer time period and distance, increasing the risk of 
SARS-CoV-2 transmission [11, 12].

An improved understanding of the timeframe of health 
impacts on COVID-19 incidence, morbidity and mortal-
ity from air pollutant exposure might help to elucidate 
the relative importance of the different pathophysiologi-
cal mechanisms. Therefore, we aimed to analyze the time-
frame of long-term (10 and 2 years) and short-term (28, 
7 and 2 days) air pollutant exposure and the association 
with COVID-19 course in a single cohort, which is still 
scarce in the literature, since most studies on COVID-19 
and air pollution have focused on either long-term expo-
sure to air pollution, over several years preceding the 
pandemic, or on short-term exposure immediately before 
or during the period in which infections, hospital admis-
sions and deaths occurred [4].

Methods
The aim of this study was to analyze the effects of both 
long- and short-term exposure to NO2 and PM with a 
diameter of 2.5 μm or less (PM2.5) on COVID-19 disease 
burden at the county level (German: Kreise) for Germany 
during the first outbreak of the pandemic in spring 2020.

We conducted an observational county-based study 
built on the methods and data sources utilized in a study 
by Koch et  al. (2022) [13]. Here we provide an analysis 
of the effects of long-term exposure, considering 10 years 
and 2 years period (2010–19 and 2018–19), a period 

Fig. 1  Air pollutant exposure can increase the vulnerability towards adverse COVID-19 health outcomes. By long-term (10 to 2 years) exposure 
the induction of chronic diseases are known risk factors for COVID-19 infection, morbidity and mortality. In the short-term (28 to 7 days) exposure, 
air pollutants might increase COVID-19 vulnerability by inducing an inflammatory response in the lung tissue and the human body. Finally, 
as SARS-CoV2 can adhere to small particulate matter in the air, this might also increase COVID-19 incidence within very short-term exposure 
up to 48 h
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where exposure to air pollutants might evoke chronic 
diseases. Additionally we estimate the effects of short-
term exposure (28 days and 7 days), a typical period 
within which inflammation responses triggered by air 
pollutants might occur [10]. Finally, we included the time 
window were the SARS-CoV-2 virus might survive being 
attached to particulate matter, which is 48h [12]. We 
focused on COVID-19 incidence and mortality, but also 
leverage data from German hospitals to include admis-
sion to intensive care units and the need for mechanical 
ventilation of COVID-19 patients into the analysis.

Ethical approval was obtained from the ethical com-
mission of the Charité (EA2/038/21; head: Prof. Dr. 
Kaschina). Patient consent was waived, because no indi-
vidual patient data were collected and data analysis was 
performed anonymously.

Setting and design
The unit of analysis is German counties, which corre-
sponds to the Nomenclature of Territorial Unit for Statis-
tics level 3 (NUTS-3). Most large cities and some smaller 
towns constitute their own counties. The first confirmed 
COVID-19 case in Germany was reported on January 
27th. Germany’s Robert-Koch-Institute (RKI) counted 
1,916,000 laboratory-confirmed COVID-19 cases and 
33,000 deaths in 2020 [14]. To avoid bias in our dataset 
from COVID-19 spreading events, we limited our anal-
ysis to the first COVID-19 outbreak period (March 4th 
to May 16th) during which social distancing rules were 
implemented by the federal government and were there-
fore consistent over the whole country.

On March 15th, schools in Germany and national bor-
ders closed, followed by restaurants, shops and churches. 
Federal states started imposing social distancing rules 
from March 22nd onwards, limiting meetings between 
different households to two persons. Some states also 
restricted residents’ movement outside their homes. By 
April 15, these rules started to be lifted. Schools reo-
pened on May 4th and borders started to be re-opened 
from May 15 [15]. Different regions were affected differ-
ently by the first wave, with high incidence in the large 
southern states of Bavaria and Baden-Württemberg and 
large cities, as well as cluster events during the February 
carnival festivities in the Rhine region. Many counties in 
the north and east were comparatively less affected dur-
ing the first wave.

Data sources
COVID‑19 data
The German Interdisciplinary Association for Intensive 
Care and Emergency Medicine (DIVI) register tracks 
intensive care capacities and COVID-19 patient num-
bers in German hospitals [16]. Daily reporting to the 

register became mandatory for all hospitals on April 16, 
2020. Data on COVID-19 patient-days on intensive care 
units and on mechanical ventilation were extracted for 
the period between April 16 and May 16, 2020. Using 
demographic data, we calculated the rate of patient-days 
per 100,000 residents. The Robert-Koch-Institute (RKI), 
Germany’s national public health institute, provides a 
public-access database of COVID-19 cases and deaths 
reported for each county by local public health offices 
[14]. All 401 counties in Germany reported cases and 
deaths from January onwards. However, only 396 coun-
ties reported to the DIVI-register and consistent data is 
only available from April 16th onwards [16]. The primary 
analysis of all outcomes is therefore limited to the DIVI 
reporting counties and the period from April 16th to May 
16th, when most restrictions on social distancing, shops 
and schools began to be lifted. However, considering the 
entire first wave starting on March 4th, the day social 
restrictions were imposed in most of the country, only 
18% of cases and deaths occurred in the shorter period 
starting on April 16th. Therefore, this longer period, 
which aligns with the RKI’s definition of the first wave, 
was used for secondary analysis.

Air pollution data
As in Koch et  al. (2022), the APExpose dataset (version 
2.0) was used to analyze the association between long-
term exposure to air pollution and COVID-19 outcomes 
[17]. The data combines observed data from the European 
Environmental Agency’s Airbase database, with modelled 
global reanalysis data from the Copernicus Atmospheric 
Monitoring Service (CAMS) to create a complete data-
set for all German counties for the period 2010—2019. 
The data includes parameters for nitrogen dioxide (NO2), 
nitrogen oxide (NO), ozone (O3), and particulate matter 
with an aerodynamic diameter smaller than 2.5μm and 
10μm (PM2.5 and PM10), as well as three different scenar-
ios (urban, rural, average). The parameters for NO2, NO, 
PM10 and PM2.5 are given as annual means while O3 is 
provided as the annual average of daily maximum 8-h. To 
analyze the effects of long-term exposure to air pollution, 
we calculated the means of each pollutant in each county 
over the ten-year period (January 2010 – December 
2019) and the two-year-period (2018 – 2019) prior to the 
COVID-19 outbreak. NO and PM10 are highly correlated 
with NO2 and PM2.5, respectively, therefore no separate 
models were included in the main analysis.

To analyze the association of short-term air pollution 
exposure and COVID-19 outcomes, a new dataset was cre-
ated, based on the same sources and methodology as APEx-
pose at the daily time resolution. The data contains daily 
observations for the period from March 4th to May 16th, 
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2020, with values for NO2, O3 and PM2.5, averaged over the 
preceding 48-h, 7- day, and 4-week time periods of interest.

Temperature time series for the German counties, aver-
aged at the same time resolutions as those used for the air 
pollution data, were obtained from the CAMS reanalysis.

Demographic data and German index of social deprivation
The Federal Statistical Office of Germany provides data 
for each county on population size, area, and popula-
tion distribution by age group and sex. Data from 2019 
was used to calculate population density and the share 
of the population aged over 64 years, as well as the frac-
tion of the population that is female. Population density 
is assumed to increase risk of transmission, and male sex 
and old age have been linked to increased risk of severe 
outcomes and death from COVID-19 [18, 19]. The Ger-
man Index of Social Deprivation (GISD), developed by 
the RKI, is a measure of relative regional socio-economic 
disadvantage. The GISD indicators are selected to align 
with the concept of individual socio-economic status 
(SES) in social epidemiology, which combines education, 
occupation, and income dimensions. The index score is 
on a scale from 0 to 1. A higher score indicates more dep-
rivation [20]. For each county, we calculated the mean 
GISD score between 2010 and 2019. Several ecologi-
cal studies in Germany and other OECD countries have 
shown an association between income/social status and 
COVID-19 incidence. In the first wave of the pandemic, 
regions with higher income and education experienced 
higher incidence, possibly due to more international busi-
ness and leisure travel [21, 22]. Studies found increased 
risk of mortality for socially deprived regions in Germany 
starting from the second wave of the pandemic, though 
findings for the first wave are less conclusive [23, 24]. 
Studies in the USA and UK have found increased risks for 
hospitalization and death for patients and regions with 
greater social deprivation [25–28].

Statistics
The analysis has four outcome variables: new cases (inci-
dence), new deaths (mortality), patient days on ICUs, and 
patient-days on mechanical ventilation. All outcomes 
were calculated as rates per 100,000 residents.

For the two long-term exposures, from 2010 to 2019 
(ten years) and 2018 to 2019 (two years), air pollution 
and COVID-19 disease parameters were calculated as 
means per county. For short-term exposures, air pol-
lution was calculated to provide averages over the pre-
ceding 2, 7 and 28 days for each date in a given county. 
The main analysis is limited to dates and counties for 
which data on patient-days on ICUs and mechanical 

ventilation were available through the DIVI-register, 
between April 16th and May 16th 2020.

Separate models for mean annual NO2 and mean 
annual PM2.5 were fitted for the ten- and two-year 
exposure periods and for the 48-h, 7-days and 4-weeks 
preceding each date. All models were adjusted to the 
following confounders: proportion of population aged 
over 65, the proportion of the population that was 
female, days between the first reported COVID-19 case 
and March 1st, population density, and the social dep-
ravation index score (Supplement Material Figure S1). 
Sensitivity analyses were conducted for tri-pollutant 
models with NO2, PM2.5 and O3 as combined expo-
sures; Short-term models were also adjusted for tem-
perature (daily mean dry temperature), as well as for 
weekdays only (excluding Saturdays, Sundays and Mon-
days from the model, since reporting of COVID-19 data 
from weekends could be delayed until Monday), and for 
the outcome parameter incidence and mortality the 
complete time period between March 4th and May 16th 
2020 was also evaluated. Separate models were fit for 
each outcome, pollutant and exposure time-window.

As the annual mean O3 pollution (based on meas-
urements of 8-h daily maximums) exceeded WHO-
recommended thresholds in all counties between 2010 
and 2019, but remained low during the first outbreak of 
the pandemic it was therefore excluded from the main 
analysis.

Negative binomial distributions were chosen due 
to overdispersion of the outcome variables. Because 
the control variables in the model operate at different 
scales (e.g. fractions of the population that are female 
were measured on a scale from 0 to 1; whereas e.g. pop-
ulation density had a larger range of values), the “scale” 
function in R was used to standardize them through 
centering and scaling, in order to improve comparabil-
ity between variables. Since many counties experienced 
some days without new cases or deaths or patients 
on intensive care, the data used to model short-term 
exposure contained a high proportion of zeros (27 – 
95%, varying by outcome). Therefore, zero-inflation 
was applied. This was not necessary for the long-term 
exposure models, as only a few counties reported zeros 
for outcomes aggregated over the entire study period 
(0 – 14%). To account for the repeat measurements 
at county-level and unmeasured factors affecting out-
comes, random intercepts were fit for each county. Sta-
tistical analysis was conducted in R Statistical Software 
(version 4.3.1). Data processing was conducted with the 
tidyverse-package and models were fit with the MASS 
and glmmTMB packages [29–32].
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Results
Disease outcomes
Between April 16th and May 16th, in the 396 coun-
ties that reported to the DIVI-register, a total of 64,621 
patient-days on ICUs and 46,234 patient-days on 
mechanical ventilation were recorded, as well as 31,660 
new cases and 1,615 deaths. Between March 4th and 
May 16th 173,160 new cases and of 8,815 deaths were 
recorded. The average county reported 40.3 cases and 
2.2 deaths per 100,000 residents between April 16th 
and May 16th, 54.4 patient-days on ICUs and 37.1 on 
mechanical ventilation per 100,000 residents (Figs.  2 
and 4, Supplement Material Table S1).

Air pollution data
The data for analyzing short-term exposure contains 
11,822 observations from 396 counties between April 
16th and May 16th 2020. Data for the secondary analy-
sis covering the entire first outbreak from March 4th to 
May 16th included 29,269 observations from 401 coun-
ties. Mean PM2.5 and NO2 pollution was slightly lower 
in 2018–19 (PM2.5: 12.5 μg/m3; NO2: 16.6 μg/m3) than in 
2010–2019 (PM2.5: 13.1 μg/ m3; NO2: 17.8 μg/ m3) (Figs. 3 
and 4, Supplement Material Table S1). The mean values 
of both pollutants averaged over two-, seven- and 28-day 
periods in the spring of 2020 were lower than the annual 
means from the preceding years (Fig.  3, Supplement 
Material Table S1).

Fig. 2  COVID-19 disease parameters per county for the period April 16th to May 16th 2020. Darker colors indicate higher values. Counties 
with missing data are marked in grey
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Fig. 3  NO2-levels and PM2.5-levels per county as mean of the annual means for the period 16.04. – 16.05.2020 and over the last 10 years from 2010–
2019. A) NO2-levels for the period 16.04. – 16.05.2020; B) PM2.5-levels for the period 16.04. – 16.05.2020; C) NO2-levels for the period 2010–2019; D) 
PM2.5-levels for the period 2010–2019. Darker colors indicate higher values

Fig. 4  Outcome parameters and NO2-levels and PM2.5-levels over time. A) Incidence and mortality and NO2-levels and PM2.5-levels 
over time in March – May 2020. Pollution variables for a given date are given as average of the previous 48 h. The dashed colored lines 
are WHO-recommended thresholds annual average levels of NO2 and PM2.5. The pink line indicates the period for which data is available 
in the DIVI-register. B) Patient-days on ICU and on mechanical ventilation and NO2-levels and PM2.5-levels over time in April – May 2020. The dashed 
colored lines are WHO-recommended thresholds for annual average levels of NO2 and PM2.5
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Fig. 5  Effect estimates for the association of A) NO2 and B) PM2.5 on COVID-19 outcomes. Bars indicate 95% confidence intervals. Each estimate 
is derived from a separate, single-pollutant model adjusted to confounders (age over 65 years, sex, social depravation, population density and days 
between the first reported COVID-19 case and March 1.st)

Table 1  Single-pollutant exposure models for PM2.5 and NO2 long-term (10 and 2-years) and short-term (28, 7 and 2 days) timeframes

Negative binominal distribution models were calculated, adjusted to the confounders age, sex, social depravation, population density and days between the first 
reported COVID-19 case and March 1st

NO2
April 16th to May 16th 2020

PM2.5
April 16th to May 16th 2020

Outcome Timeframe Estimate (odds 
ratio)

95 CI P—value Estimate (odds 
ratio)

95 CI P—value

Incidence 10 years 1.034 1.010—1.058 0.0030 1.043 0.960—1.129 0.3068

2 years 1.037 1.015—1.059 0.0006 1.023 0.947—1.103 0.5486

28 days 1.292 1.262—1.322 0.0000 1.317 1.298—1.337 0.0000

7 days 1.036 1.023—1.049 0.0000 1.182 1.163—1.201 0.0000

2 days 1.014 1.008—1.020 0.0000 1.049 1.039—1.058 0.0000

Mortality 10 years 1.038 0.998—1.079 0.0528 0.998 0.864—1.145 0.9793

2 years 1.046 1.008—1.086 0.0114 0.982 0.857—1.119 0.7813

28 days 1.294 1.211—1.381 0.0000 1.553 1.466—1.644 0.0000

7 days 1.081 1.037—1.127 0.0000 1.368 1.278—1.464 0.0000

2 days 1.029 1.006—1.054 0.0150 1.105 1.068—1.143 0.0000

ICU 10 years 1.050 1.017—1.084 0.0015 0.979 0.865—1.102 0.6999

2 years 1.053 1.022—1.084 0.0003 1.016 0.903—1.140 0.7588

28 days 1.252 1.238—1.266 0.0000 1.206 1.197—1.215 0.0000

7 days 1.014 1.008—1.020 0.0000 1.104 1.095—1.112 0.0000

2 days 1.004 1.001—1.007 0.0030 1.034 1.030—1.038 0.0000

Ventilation 10 years 1.057 1.021—1.095 0.0010 0.968 0.844—1.105 0.5997

2 years 1.058 1.025—1.093 0.0003 1.005 0.881—1.142 0.9356

28 days 1.278 1.257—1.300 0.0000 1.231 1.220—1.243 0.0000

7 days 1.016 1.009—1.023 0.0000 1.115 1.105—1.125 0.0000

2 days 1.004 1.001—1.007 0.0110 1.036 1.031—1.041 0.0000
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Long‑term exposure models
In our analysis of the long-term single-pollutant expo-
sure models for 10- and 2-year timeframes, PM2.5 has 
no statistically significant association with any out-
come (Fig.  5, Table  1). In contrast, for NO2, the long-
term single-pollutant exposure models show positive 
and statistically significant associations with all but 
one of the health outcomes examined (Fig. 5, Table 1). 
A 1 μg/m3 increase in mean annual NO2 between 2010 
and 2019 was linked to a 3.4% (95% CI 1.010 – 1.058) 
increase in incidence, a 3.8% (95% CI 0.998 – 1.079) 
increase in mortality, a 5% (95% CI 1.017 – 1.084) 
increase in patient days on ICU, and a 5.7% (95% CI 
1.021 – 1.095) increase in additional patient-days on 
mechanical ventilation. Similar results were seen for 
the 2-year timeframe, with the exception of mortality, 
where the increase of 3.8% was not statistically sig-
nificant (95% CI 0.998–1.079, p = 0.053) (Table 1). The 
effect estimates for the exposure timeframe 2018–19 
are of a similar magnitude and also yield a statistically 
significant estimate for mortality.

Short‑term exposure models
In the models for short-term exposure to NO2 and 
PM2.5, a mean increase of 1 μg/m3 over the preced-
ing 2, 7, or 28 days is associated with an increase in all 
COVID-19 disease parameters and all estimates are sta-
tistically significant at the 5%-level (Table  1). The effect 
sizes are generally highest for pollution averaged over 28 
days preceding disease outcomes and are larger in the 
PM2.5-models than in the NO2-models. A mean increase 
of 1 μg/m3 in PM2.5 in the 7 preceding days was associ-
ated with an 18.2% (95% CI 1.163 – 1.201) increase in 
incidence and a 36.8% (95% CI 1.278 – 1.464) increase in 
mortality (Table 1). A mean increase of 1 μg/m3 in NO2 
in the 7 preceding days was associated with a 3.6% (95% 
CI 1.023 – 1.049) increase in incidence and an 8.1% (95% 
CI 1.037 – 1.127) increase in mortality (Table  1). Fig-
ure 5 visualizes the effect estimates of PM2.5 and NO2 on 
COVID-19 outcomes. Each estimate is derived from a 
separate model.

For patient-days on ICU and on mechanical ventilation, 
the effects are also largest after 28 days, with increases 
of 1 μg/m3 in either pollutant associated with increases 
of over 20% for both outcomes. However, these results 
should be regarded as only indicative, as the models for 
both outcomes exhibited poor fit and high dispersion val-
ues, ranging from 94 to 109, with a median of 9 × 106. The 
models’ random effects indicated substantial variability 
at the county level (mean variance = 1.83, mean stand-
ard deviation = 1.33). This suggests that there are distinct 
county specific patterns.

Sensitivity analyses
Sensitivity analyses were conducted that included data 
from March 2020, employed a tri-pollutant model for 
NO2, PM2.5 and O3 as combined exposures, adjusted for 
daily mean temperature and for weekdays only (exclud-
ing Saturdays, Sundays, and Mondays) in the short-term 
models. The results of the sensitivity analyses were con-
sistent with the single pollutant model findings (Supple-
ment Material, Table S2 – S4).

Discussion
In our model, the 28-day short-term exposure to elevated 
PM2.5 and NO2 levels have the highest association to 
COVID-19 infection, morbidity as well as mortality, as 
compared to long-term (10 and 2 years) or very short-
term (2 or 7 days) air pollutant exposure. In detail, an 
increase of 1 μg/m3 in PM2.5 in the 28 preceding days 
was associated with an 31.7% increase in incidence and 
an 55.3% increase in mortality, as well as an increase in 
the need for ICU treatment and mechanical ventilation 
of 20.6 and 23.1% each. For NO2 an increase of 1 μg/m3 
at 28 days before COVID-19 infection, increased the risk 
for all assessed COVID-19 outcomes by 25.2 – 29.4%.

In a systematic review of 139 studies on long-term 
exposure, Bhaskar et  al. found that 127 reported statis-
tically significant positive associations between air pol-
lution and adverse COVID-19 health outcomes [4]. 
Carballo et  al. reviewed 355 pollutant-COVID-19 esti-
mates from 116 long- and short-term exposure studies 
and found that approximately half reported significant 
positive associations for incidence (52.7% of studies) and 
mortality (48.1% of studies), with a slightly lower rate 
for non-fatal severe outcomes (41.2% of studies) [33]. 
Similarly, a meta-analysis of studies using data from indi-
vidual patients reported 66% higher odds of COVID-19 
infection and 127% higher odds for severe non-fatal out-
comes per additional 10 μg/m3 of PM2.5, in addition to a 
positive but statistically not significant association with 
mortality [34].

Overall, our findings are consistent with other studies 
that have found positive and statistically significant asso-
ciations between air pollution and COVID-19. However, 
a detailed time-frame association between the different 
mechanisms by which air pollutants cause adverse health 
effects in COVID-19 pandemic is still unresolved.

Even though epidemiological studies do not pro-
vide insights into the mechanisms by which air pol-
lutants cause adverse health effects, disentangling the 
time-frame of air pollutant impacts on health in epide-
miological studies can help to rank the importance of 
each possible mechanism. These results are critical for 
providing insights into causality and about how best 
to avoid adverse health effects from PM2.5 or NO2 in 
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future. As already mentioned in the introduction, there 
are three hypotheses as to the mechanisms by which air 
pollutants could causally contribute to elevated trans-
mission or adverse health effects, which can be ordered 
in time. Over the long-term, air pollution contributes 
to an increase in chronic diseases, which results in 
a higher vulnerability to COVID-19 [35–37]. In the 
short-term, air pollutants exacerbate the inflammatory 
response and thereby are linked to a higher susceptibil-
ity and adverse course after COVID-19 infection [9]. 
Finally, on the very short-term (2 days or less), there 
is the hypothesis that COVID-19 viruses persist in the 
atmosphere longer by attaching to particulate mat-
ter, which could increase the transmission and thereby 
incidence of COVID-19 [11]. It should be acknowl-
edged that the role of particulate matter in COVID-19 
transmission is disputed in the literature.

An attempt to decompose long-term (2 years) and 
short-term (up to 11 days) particulate matter effects on 
COVID-19 excess deaths were also undertaken by Bec-
chetti et  al. [38] They found a positive and significant 
effect on the long-term and the short-term exposure, 
with an increase in COVID-19 mortality of up to 20% 
for each increase of 1 µg/m3 in PM2.5. This is compa-
rable to what we found in this study, where an increase 
in COVID-19 mortality of 18.2% (7 days) and 36.8% (28 
days) was observed.

A study from Delhi, India analyzed short-term (one to 
three weeks) air pollution exposure and found the high-
est association with COVID-19 cases and death at two 
and three weeks [39]. These results are in line with our 
results, since we also found the highest association at 4 
weeks of air pollutant exposure to COVID-19 incidence 
and mortality. However, Singh et  al. found a higher 
association between NO2 air pollution and the COVID-
19 incidence and mortality than with PM2.5  [39]. One 
main difference between both studies is, that air pollut-
ant concentrations are much higher in India on average 
than in Germany and Singh et  al. analyzed data from 
one, big city. In spring of 2020, the mean PM2.5 concen-
tration in Germany was 9.8 µg/m3, as compared to 88 
µg/m3 in Delhi, and the mean NO2 were 12.5 µg/m3 and 
35 µg/m3 in Germany and Delhi, respectively. These 
differences likely impacted the results.

A recent study from China examined the impact of 
short-term (one week and one month), as well as mid-
term (3 month), exposure to ambient air pollutants on 
disease recovery from COVID-19. They found, that 
exposure to high PM2.5 and NO2 level at one month 
before COVID-19 infection is associated with a pro-
longed recovery [40]. These findings are well in line 
with our results, showing the highest association with 

PM2.5 and NO2 exposure one month before infection, 
even though they focus COVID-19 recovery.

A study from Mexico looked at the impact of long- 
(years) and short-term (2 weeks) exposure to PM2.5 on 
mortality from COVID-19 in an individual level data 
base. They found an association between both long-term 
and short-term exposure to PM2.5 on COVID-19 mor-
tality, which is in line with our short-term results, but 
not with our long-term results, where we did not find 
an association between PM2.5 exposure and COVID-19 
mortality [41]. Interestingly, they also found a positive 
association between aging and health impact from ambi-
ent air pollutant exposure [41]. This indicates, that the 
mean age of a study cohort should be taken into account 
when comparing results from different studies.

A study from California assessing the impact of short-
term (4-weeks) and long-term (6-years) exposure on 
COVID-19 mortality, found the highest positive associa-
tion with long-term PM2.5 and NO2 exposure, as compared 
to short-term exposure [42]. The findings differ from our 
results, as we found lower or no long-term association 
with PM2.5 or NO2 exposure, but a significant short-term 
impact. As they also included study periods after COVID-
19 vaccination has taken place, they could also show that 
vaccination reduced the risk association between air pol-
lutant exposure and COVID-19 mortality risk.

Within our analysis we found the highest positive asso-
ciation between COVID-19 mortality, morbidity and 
incidence with elevated PM2.5 and NO2 on the time-
frame of 28 days and then followed by 7 days, which is 
most likely related to an increased impact of an elevated 
inflammatory state within the pulmonary system caused 
by air pollutants and by then dramatically increasing the 
vulnerability towards COVID-19 of the exposed person. 
This result could even be an underestimation, since in 
Germany, like most European countries, we saw signifi-
cant reductions in NO2 (30%) and PM10-levels (10%) in 
April 2020, compared to previous years due to lockdown 
measures [43]. However, even at these reduced levels, we 
found the highest association on COVID-19 disease bur-
den by short-term exposure of PM2.5 and NO2.

As mentioned above, the age of the analyzed cohort 
should be included in the analysis, as well as the baseline 
level of air pollutant concentration in the atmosphere, 
since the relationship between the air pollutant concen-
tration and the health impacts are not linear.

Limitations
The limitation of the model used in our study lies in the 
fact that in most cases people who are exposed to ele-
vated air pollutant concentrations in the short-term are 
also generally exposed to elevated air pollutant levels 
on the long-term, making it difficult to distinguish the 
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associations between long- and short-term exposure and 
COVID-19.

Regional variations in prevention measures such as 
social distancing regulations are not accounted for in 
the model. Data from public health offices is likely to 
be incomplete and dating of case notifications may not 
accurately reflect disease onset. For example, the data on 
cases and deaths has reporting-lags on weekends, when 
public health offices were closed. Data for Saturdays, 
Sundays and Mondays (when the weekend notifications 
were processed) therefore likely have systematic errors. 
Data on ICU occupancy and mechanical ventilation was 
collected primarily for resource coordination in a health 
emergency, not scientific purposes, and may contain sys-
tematic and unsystematic errors.

Some counties, especially those that include major 
cities such as Berlin, Hamburg, or Munich, are very 
large and heterogeneous. They encompass sub-popu-
lations that experience very high and very low levels of 
social deprivation, which skew very young and very old, 
live near traffic and in green suburbs. In this study, we 
could not differentiate between these sub-populations 
or capture complexities in pollution exposure through 
factors such as mobility. For example, the county Hoch-
taunuskreis has some of the lowest levels of pollution in 
Germany, but many residents work in nearby Frankfurt 
and Mainz, which have some of the highest levels of pol-
lution. Similarly, not all patient-days on ICUs may be due 
to residents of the county in which the reporting hospi-
tal is located: three of the ten counties with the highest 
reported incidence do not have ICUs and residents who 
required intensive care and ventilation were therefore 
likely reported by hospitals in nearby counties.

Case numbers are likely to be an underestimate and 
do not account for asymptomatic cases. The database 
only included cases after the patients tested positive and 
tests in the spring of 2020 were limited to patients who 
showed symptoms. Associations modeled in this paper 
may indicate the effect of air pollution on the develop-
ment of symptoms rather than on an increased risk of 
infections.

Conclusion
Our findings contribute to the emerging literature on 
the link between COVID-19 and air pollution by show-
ing a positive association between PM2.5 and NO2 on 
the incidence and mortality between April and May 
2020 in Germany, with the strongest association one 
to four weeks after exposure to high pollution levels. 
These findings contribute to a larger evidence base 
on the negative effects of air pollution on population 
health. Not only would reductions in air pollution ease 
the burden of many chronic diseases on the German 

health system, improved air quality might also make 
populations more resilient against the now endemic 
SARS-COV-2 and similar infectious diseases in the 
future by reducing the inflammatory response in the 
population.

Given the limitations of our and other studies, future 
research should focus more on individuals to contrast 
and distinguish the effects of long- versus short-term 
and unveil the impact on the different mechanisms by 
which air pollutants cause adverse health effects. Fur-
ther research using patient-level data or disaggregating 
population-data by age-groups, sex co-morbidities and 
vaccination status, etc. would mitigate the limitations of 
epidemiological cohort studies to some extent.

As we and others could confirm, a link between short-
term air pollution and the incidence, disease course and 
mortality in COVID-19 exists; additional tools could be 
deployed during future health emergencies, such as lim-
iting industrial production and car traffic, construction 
projects in population centers, as well as existing tools, 
such as indoor air filters, facial masks or lockdowns, 
could have additional justification.
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