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Abstract 

Background  The detection of a local per- and polyfluoroalkyl substances (PFAS) pollution hotspot in Zwijndrecht 
(Belgium) necessitated immediate action to address health concerns of the local community. Several human bio-
monitoring (HBM) studies were initiated, gathering cross-sectional exposure data from more than 10,000 participants. 
The linkage of these HBM data with primary care health registries might be a useful new tool in environmental health 
analysis.

Aim  We assessed the feasibility of linking exposure data from HBM programs to health outcomes from the Intego 
registry, which collects data from general practitioners’ electronic health records. This feasibility study uses expo-
sure data from one of the completed PFAS HBM studies, which included 796 individuals. We describe the separate 
datasets, the process of integrating the HBM data into Intego, the analysis plan and the advantages and challenges 
of using this method.

Results  We established the integration of HBM data into the Intego primary care morbidity database, adhering 
to stringent privacy regulations and quality standards to ensure result integrity. Because of the modest sample size 
used in this feasibility study, no conclusions about the impact of PFAS on health endpoints can be drawn. However, 
with PFAS data from more than 10,000 residents available soon, more robust studies will be possible with this new 
method.

Interpretation  We introduce a novel approach for assessing the impact of environmental health hazards within pri-
mary care settings. The methods outlined here not only pave the way for larger-scale projects but also offer a promis-
ing avenue for long-term environmental health monitoring.
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Introduction
The impact of our environment on health is an increas-
ingly important topic, given the multifaceted influences 
of climate change, industrialization and air pollution, 
among other environmental stressors [1–4]. These chal-
lenges significantly affect population well-being, necessi-
tating the development of targeted preventive strategies 
for individuals vulnerable to adverse health effects from 
environmental exposures. Achieving such strategies 
requires a thorough understanding of the nature, timing, 
and mechanisms underlying these health impacts.

Environmental exposures have complex health implica-
tions, influenced by factors such as exposure route, dose, 
timing, frequency, duration of exposure, genetics and 
individual lifestyle factors [5]​. Moreover, the diversity of 
exposure assessment methods, ranging from exposure 
modelling to environmental monitoring to biomarker 
measurements in human samples, underscores the 
importance of cautiously interpreting research findings 
in this field.

Human biomonitoring (HBM) is defined as the method 
for assessing human exposure to chemicals or their 
effects by measuring these chemicals, their metabolites 
or their reaction products in human samples [6]. It offers 
a direct measure of internal exposure to environmental 
pollutants and allows for individualized assessment  [7]. 
Although HBM can sometimes require invasive sampling 
methods, it remains a powerful approach for assessing 
internal exposure to environmental pollutants [8].

Over the past few decades, numerous regional HBM 
studies have been conducted. At the European level, the 
HBM4EU initiative coordinated these HBM projects with 
the goal of standardizing procedures across all mem-
ber states, a project that concluded in June 2022  [9]​. In 
Flanders, the “Flemish Environment and Health Stud-
ies” (FLEHS) have been conducted since 2002 ​[10]​. These 
studies included four cycles of HBM programs, which 
involved measuring various pollutants in the population, 
identifying exposure pathways and determining health 
outcomes. The fifth cycle is currently underway and is 
expected to continue until 2027. While many FLEHS and 
HBM4EU studies have focused on exposure assessment 
in a population representative sample for Flanders and 
Europe, other studies have assessed the impact of local 
pollutants in contaminated regions (hotspots), such as 
the Veneto cohort studies [11]​​, the Ronneby cohort stud-
ies ​[12]​ or the C8 study [13].

HBM studies employ several methods to collect 
health outcome data. One approach is to have partici-
pants complete a health questionnaire, which collects 
self-reported outcome measures and covariates. How-
ever, these self-reported data can be subject to recall 

bias, making them less than ideal for studies inves-
tigating objective health effects. Some HBM studies 
measure biomarkers of effects in addition to exposure 
values [14, 15]. Another alternative is to conduct objec-
tive measurements, such as weight or blood pressure, 
during the collection of HBM material  [16]. However, 
measurements of biomarkers of effect and objective 
parameters are often conducted within a limited subset 
of the study population.

Integrating HBM data with existing health data, for 
example from electronic health records (EHRs) of gen-
eral practitioners (GPs), presents a promising avenue 
for advancing our understanding of environmental 
health. This approach can mitigate many limitations 
of other data collection methods, such as recall bias 
and the limited availability of objective outcome meas-
ures as mentioned before. A wide array of health data 
is available in EHRs, containing medical information 
from years before exposure assessments and health 
outcome evaluations. They continue to collect new 
medical information after measurements are taken. 
Additionally, they have a large number of participants 
creating a larger cohort, and repeated analysis of the 
exposure makes it possible to create a long-term pro-
spective cohort to follow up on health effects and evo-
lution of the exposure concentration, contributing to 
evidence for possible causality in any associations that 
might be found.

There remains a notable gap in research concerning 
environmental health effects in primary care settings. 
Primary care often serves as the initial point of contact 
for individuals experiencing early signs of health issues, 
including environmental health problems. As the “coor-
dinator of care”, a GP aims to integrate all medical 
information of patients into their EHR. Integrating GP’s 
EHRs into environmental health research thus offers a 
valuable opportunity to enhance our understanding of 
these health effects at the community level.

However, several issues might hinder this linkage ​[17]​
. Both HBM and EHR data contain sensitive personal 
health information. Ensuring the privacy and confiden-
tiality of these data during the linking process can be 
complex. Additionally, HBM data and EHRs may not be 
directly compatible. They might be collected in differ-
ent formats, use different units of measurement, or cat-
egorize data differently. Finally, the process of linking 
large datasets can be technically demanding, requiring 
sophisticated software and hardware, as well as exper-
tise in data management and analysis. In this study, we 
aimed to assess the technical feasibility of integrating 
HBM data with medical data from GPs’ EHRs.



Page 3 of 10Jansen et al. Environmental Health            (2025) 24:1 	

Methods
PFAS human biomonitoring study
After the detection of elevated perfluorooctane sulfonic 
acid (PFOS) levels in soil and groundwater near a chemi-
cal plant in Antwerp, the Flemish government commis-
sioned a population study to assess the extent of PFOS 
and other per- and polyfluoroalkyl substances (PFAS) 
exposure within the local population. Residents liv-
ing within a 3  km radius of the pollution hotspot were 
invited to undergo blood testing for 16 different PFAS 
compounds. This study was based on convenience sam-
pling since it relied on volunteers. Ethical approval was 
granted by the University of Antwerp’s ethical committee 
on 12/07/2021 (registration number: B3002021000126), 
and informed consent was obtained from all participants.

In the summer of 2021, 796 residents participated in 
this project. The study provided descriptive statistics for 
the 16 PFAS compounds and demonstrated that partici-
pants’ PFAS serum levels exceeded background values 
and health-based guidance values. HBM-I and HBM-II 
values as described by the German HBM commission 
were chosen as guidance values used for feedback to 
participants [18]. Furthermore, the study provided infor-
mation on the main sources of exposure by analysing 
the relationships between internal PFAS levels and vari-
ous environmental and behavioral factors collected via 
a self-assessed questionnaire. Because the information 
collected in this questionnaire was not coded electroni-
cally like the PFAS measurements, it could not be sent to 
the GPs’ EHRs and thus could not be used in this specific 
project. Additionally, we didn’t want to overload the EHR 
with non-medical information that was collected in the 
questionnaire (e.g. whether a participant grew vegetables 
in their backyard). However, the questionnaire and other 
details of the original exposure assessment study were 
described by Colles et al. [19]. Participants were given the 
option to consent to send their PFAS blood test results 
to their GPs to facilitate individual follow-up. The serum 
PFAS results were first disseminated to participants’ GPs 
via post. Only in the second stage, after technical prepa-
ration of the data export, the results were delivered elec-
tronically and correctly coded to the GP. This process of 
data integration will be explained further in this article.

The GPs of the affected region received their patients’ 
results and an information brochure about the possible 
health effects of PFAS, as well as advice on what to say 
to their patients about these effects and how to mini-
mize further exposure to PFAS. Patients themselves also 
received their own results, together with information 
about guidance values and what they mean. They were 
referred to an environmental health specialist of the 
region or their GP if they had any questions regarding 
their results.

Intego database
The Intego database serves as a primary care morbid-
ity registry, aggregating health and demographic data 
extracted from the EHRs of GPs. Stringent measures 
are in place to ensure the anonymity of medical data. 
An array of data types can be analysed within the Intego 
database, including but not limited to age, gender (as reg-
istered on the patient’s electronic ID card), postal code, 
coded diagnoses, prescribed medications, vital signs, 
and laboratory results. These data are extracted and 
pseudonymized weekly and can be accessed by author-
ized members of the Intego team for specific research 
purposes. To become a registrar for Intego, GP practices 
must meet specific quality criteria to ensure a high qual-
ity of the extracted medical data. A detailed explanation 
of the data extraction methods, data flow and quality cri-
teria for registrars within Intego are available elsewhere ​
[20]​. Only GPs that use CareConnect EHR software, 
which is used by about 50% of GPs in Flanders, can par-
ticipate in the Intego project.

As of March 2024, the Intego database contains data 
from 1,272,166 patients spread across Flanders, Belgium. 
GPs are constantly being recruited, while some GPs 
simultaneously leave our network. This creates a dynamic 
cohort that changes over time.

Data integration
To integrate the HBM data into the Intego database, we 
opted to transmit the HBM results directly to the EHR 
of the participant’s GP. Before we sent the results, each 
PFAS compound received a designated lab test code, 
which was also coded into the EHR software. Upon 
arrival, the PFAS values were thus uniformly coded as lab 
results within the EHR, enabling automatic extraction by 
Intego, similar to any other laboratory finding.

A specialized macro was developed to convert the 
HBM database into .lab files (containing the PFAS result 
linked to the participant’s social security number) and 
.adr files (containing the unique RIZIV code of the par-
ticipant’s GP, which is assigned to every doctor working 
in Belgium). These files were subsequently dispatched to 
the participant’s EHR via the eHealth Box utilizing the 
“Unified Messaging” module (UM module). This method 
is commonly employed for secure medical data transmis-
sion, including communication between GPs and hospi-
tals or laboratories.

Selection of health endpoints
Given the vast amount of health data within Intego, a 
selection of health endpoints potentially influenced by 
PFAS was essential. This selection process was informed 
by a nonsystematic literature review, drawing from the 
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“Agency for Toxic Substances and Disease Registry” 
(ATSDR) toxicological profile and several additional 
cohort studies from other PFAS hotspots in Europe, list-
ing potentially relevant health endpoints for which sig-
nificant associations with PFAS in serum were found 
[21–25]​​. Furthermore, the chosen outcomes needed to be 
readily accessible within the Intego database. As Intego 
is a primary care morbidity database, data pertaining to 
mortality or hospitalization were not available. Addition-
ally, for malignancies, a more comprehensive database 
exists in Belgium, namely the Belgian Cancer Regis-
try [26]. For a full list of selected endpoints, see Table 1. 
For this study, we selected more prevalent outcomes 
from this list to assess the feasibility of our methods. 
Hypertension was used as a test case for chronic binary 
outcomes. Alanine transaminase (ALT), a liver enzyme, 
was used as a test case for continuous outcomes.

Subsequently, we identified the covariates associated 
with each selected outcome and ascertained their avail-
ability within the Intego database using a non-system-
atic literature search and the clinical experience of the 
Intego team. In this preliminary study, we used gender, 
age, BMI, and smoking status as covariates. Owing to 
the limited sample size, we excluded some less prevalent 
covariates, such as problematic alcohol use and stress 

disorders, which were originally considered for ALT and 
hypertension.

Additionally, a “case definition” was delineated in 
Intego for all outcomes and covariates, using different 
coded clinical values such as International Classifica-
tion of Primary Care (ICPC) codes ​[27]​. For example, 
renal insufficiency could be defined by the ICPC code for 
renal insufficiency or by identifying patients with an esti-
mated glomerular filtration rate (eGFR) less than 60 ml/
min/1.73m² in multiple measurements over several 
months. A full list of case definitions for the selected out-
comes is available in supplementary Table 1 (S1).

Statistical analysis
Handling of exposure values
Following the integration of PFAS values into the Intego 
database, our next step was to devise a comprehensive 
statistical analysis plan. For the exposure values, namely 
the PFAS serum concentrations, the data can be classified 
as follows:

•	 Below the limit of detection (< LOD), meaning the 
concentration was too low to be detected with cur-
rent techniques.

Table 1  List of selected health endpoints that were deemed relevant for analysis and are available in Intego

Category Biomarker of effect or health endpoint Data type

Cardiovascular Hypertension Binary – chronic

Ischemic events Binary – acute

Systolic blood pressure Continuous

Diastolic blood pressure Continuous

Kidney function Renal insufficiency Binary – chronic

Creatinine/eGFR Continuous

Respiratory Chronic bronchitis Binary – chronic

Asthma Binary – chronic

Shortness of breath Ordinal

Hormonal system Thyroid disease Binary – chronic

Thyroid stimulating hormone (TSH) Continuous

Gastro-intestinal Ulcerative colitis Binary – chronic

Pregnancy Gestational hypertension Binary – acute

Musculoskeletal Arthrosis Binary – chronic

Liver function Alanine transaminase (ALT) Continuous

Aspartate transferase (AST) Continuous

Gamma-glutamyl transferase (GGT) Continuous

Bilirubin Continuous

Fat metabolism Total cholesterol Continuous

LDL-cholesterol Continuous

HDL-cholesterol Continuous

Triglycerides Continuous
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•	 Below the limit of quantification (< LOQ), meaning 
that PFAS was detected, but at such low concentra-
tions that quantification could not be performed.

•	 Quantifiable concentration in µg/l.

For data < LOQ, a posttreatment is necessary to include 
these data in the analysis. Values < LOQ were imputed via 
simple random imputation techniques if at least 30% of 
observations in a given biomarker were above the LOQ, 
in accordance with the method used in HBM4EU  [28]​
. First, a censored log-normal distribution was fitted 
through the values above the LOQ. This resulted in the 
estimation of the mean and standard deviation of the 
log-normal distribution of all measurements (below and 
above the LOQ). Values were then randomly imputed for 
the measurements below the LOQ, drawn between 0 and 
the limit from the log-normal distribution with the esti-
mated mean and standard deviation. For single-pollut-
ant analysis, linear (L) and the sum of linear + branched 
(L + B) forms of several PFAS were used. For the mixture 
models, only the linear forms were used since including 
both in the model would mean incorporating the linear 
forms twice in the same model.

Data analysis
We categorized the outcomes into different data types: 
continuous, binary-acute, binary-chronic, or categorical, 
and devised specific analytical methods for each type. 
Note that the exposure variables, PFAS serum concentra-
tions, are always continuous. In this feasibility study, we 
examined the liver value ALT and hypertension as test 
outcomes as discussed previously.

For ALT (a continuous outcome), we used multiple lin-
ear regression analysis.

For hypertension (a chronic binary outcome), we used 
binary logistic regression analysis.

Moreover, we performed multipollutant mixture analy-
sis to quantify the impact of the PFAS mixture on health 
outcomes and discern the individual contributions of 
different PFAS compounds. To achieve this, we adopted 
the “weighted quantile sum” (WQS) method. The study 
sample was randomly split into a training set (40%) and a 
validation set (60%). Using the training set, each chemical 
was scored into quartiles, and total quantile scores were 
computed for individual participants. Empirical weights 
for each PFAS compound in the mixture were estimated 
by bootstrapping, a statistical resampling procedure. 
These weights were then used to generate WQS scores 
representing the overall mixture. To accommodate bidi-
rectional associations (both positive and negative), we 
conducted quantile-based g-computation, estimating the 
parameters of a marginal structural model rather than a 
standard regression model. To assess result consistency 

and account for potential nonlinear associations between 
PFAS compounds and health outcomes, we conducted 
additional mixture analysis using Bayesian kernel 
machine regression (BKMR) with the ‘BKMR’ package in 
R. This approach facilitates the identification of uncertain 
exposure‒outcome relationships, whether linear or non-
linear, through nonparametric methods (kernel function) 
and subsequently evaluates exposure mixtures. Further-
more, BKMR aids in identifying potential interactions 
between PFAS compounds.

Results
In total, 291 patients had at least 1 PFAS compound 
quantified in their EHR, which was 36.6% of all par-
ticipants in the HBM study. The main reason for this 
relatively low number is that not all participants are 
part of the Intego database: not every GP in the region 
can participate in the Intego project (e.g. because they 
use different software or do not meet the quality crite-
ria for registrars as mentioned above) or is willing to 
participate. Only 29 patients (3.6%) did not give con-
sent to send their HBM results to their GP. As a result 
of matching all cases with covariates, the sample size 
was reduced further because of missing data for some 
of these factors. BMI and smoking status, for example, 

Table 2  Descriptive analysis for the continuous outcome, ALT, 
and binary outcome, hypertension. L = linear form, B = branched 
form. L + B = sum of linear and branched forms

a Analyses are possible
b Analyses are possible with the use of imputation techniques for the exposure 
value
c no analysis is possible because too few quantified exposure values are available

PFAS compound Hypertension ALT
Measured count (Detected%, < 
LOQ%)

PFOS (L + B)a 75 (100, 0) 69 (100, 0)

PFOS (L)a 68 (100, 0) 67 (93, 0)

PFOA (L + B)a 68 (100, 0) 62 (100, 0)

PFOA (L)a 68 (100, 0) 62 (100,0)

PFHxS (L + B)a 68 (100, 0) 62 (100, 0)

PFHxS (L)a 68 (100, 0) 62 (100, 0)

PFNAa 68 (100, 0) 62 (100, 0)

PFHpSb 68 (84, 10) 62 (84, 10)

PFDAb 68 (94, 7) 62 (94, 5)

PFUnAb 68 (84, 37) 62 (84, 37)

PFBAb 68 (81, 69) 62 (81, 67)

PFHpAb 68 (81, 54) 62 (82, 55)

PFDoAc 68 (79, 79) 62 (79, 79)

PFBSc 68 (79, 78) 62 (79, 79)

PFPeAc 68 (79, 78) 62 (79, 79)

PFHxAc 68 (79, 78) 62 (79, 79)
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were not detected in the EHR for every patient. For 
future studies, imputation techniques will be used to 
correct for these missing data ​[29]​. Table  2 shows the 
descriptive analysis for each PFAS.

For continuous data, we chose the liver value ALT 
as the outcome in this first analysis. For binary data, 
hypertension was selected for testing first. We listed the 
number of cases we could match with covariates and 
thus use in the analysis for all PFAS compounds. We 
also listed the percentage of participants where PFAS 
were detected (detected%), as well as the percentage of 
values that were below the LOQ. We were able to per-
form single-pollutant analyses for 12 compounds, 5 of 
which needed imputation techniques for the exposure 
data as described earlier. Furthermore, we were able to 
perform mixture analysis with the four most prevalent 
PFAS compounds (PFOS, PFOA, PFHxS and PFNA). 
However, because of the small sample size, no conclu-
sions can be drawn from these data.

Our multiple regression models revealed signifi-
cant and clinically logical associations between covari-
ates and health outcomes. For example, patients with a 
higher BMI had a significantly greater chance of having a 
hypertension diagnosis. The fact that we find these plau-
sible associations serves as an internal validation of our 
method.

Discussion
In this study, we explored a new method to investigate 
the health effects of pollutants in the general population 
or in specific contaminated areas. We successfully inte-
grated biomarkers of exposure, i.e. serum PFAS values in 
a population close to a PFAS production site, into Intego, 
a primary care morbidity database that gathers data from 
the EHRs of GPs. Figure 1 shows a summary of the data 
flow and the measures for secure data handling. It should 
be clear that this study was not designed to draw conclu-
sions about the health impacts of PFAS on the local pop-
ulation. This study’s main objective was to develop the 
methodology of this novel approach and list its strength 
and limitations, with the aim of finding ways to improve 
upon these methods and applying it to larger cohorts in 
the future.

Strengths and opportunities
Our method offers several advantages. Its automated 
data collection from GPs’ EHRs reduces the need for 
additional data gathering alongside HBM studies, pro-
vided that proper coding and consent procedures are 
adhered to. Moreover, the flexibility to conduct repeated 
data collection and analysis at chosen intervals enables 
longitudinal monitoring of affected populations. To the 
best of our knowledge, this is the first study to establish a 
direct connection between HBM and primary care health 
data from EHRs. This new approach helps bridge a gap in 
environmental health research within primary care that 
has not been addressed before.

Fig. 1  Summary of data flow and data security measures taken at every step
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Currently, a larger HBM study is underway in which 
PFAS levels are measured in more than 9,000 participants 
in the Zwijndrecht region. This presents a significant 
opportunity to apply our methods to a larger sample, ena-
bling more robust analyses and addressing the local pop-
ulation’s concerns about the health impact of PFAS. We 
aspire to extend this methodology to other hotspot cases, 
including additional PFAS studies and exposure hotspots 
related to other chemicals (such as metals). We also aim 
to conduct larger-scale investigations into internal pollu-
tion levels among the general Flemish population.

Challenges and future recommendations
We had to overcome several important challenges when 
going through the process of data integration, analysis 
and interpretation. Having learned from these challenges, 
we propose some recommendations for future studies to 
ensure a high quality of the integrated data.

HBM study setup
First, when setting up HBM projects, informed consent 
must be given by the participant to send their test results 
to their GP using their social security number, in order 
to link them to the data in Intego. Without this, no inte-
gration is possible. As mentioned earlier, the majority of 
patients (96.4%) had no problem with this. Furthermore, 
to increase the validity of analyses, only labs accredited 
to analyse the pollutant in question should be used when 
setting up HBM studies.

Additionally, we noticed that no patients with increased 
reimbursement were found in the final pool of partici-
pants we used for analysis. In 2022, 19.9% of the Flemish 
population had increased reimbursement for healthcare. 
This points to severe underrepresentation in our sample. 
If we look at the data from the HBM study from which 
we used exposure data, there was also an underrepre-
sentation of people from lower socioeconomic classes, 
but not as severe as in the final linked dataset. This could 
be because the sample size was too small or because of 
the sampling method, since we relied on volunteers in 
the community to have their blood taken, which may 
have resulted in selection bias towards a population from 
a higher social class. Other possibilities are that peo-
ple with increased reimbursement have fewer covari-
ates coded into their EHR, for example because they 
visit their GP less often. This merits attention in future 
studies: people of every socioeconomic status should be 
included in HBM projects, with extra attention given 
to those with low income. With more than 10,000 par-
ticipants from the ongoing PFAS exposure study ready to 
link with the Intego dataset, this could reflect a more rep-
resentative sample for the local population.

GP data quality
The quality of data registered in the EHR of GPs should be 
sufficiently high. GPs should be aware of the importance 
of structurally coded data, not only for research purposes, 
but also for adequate medical care on individual and com-
munity level. A primary care morbidity database should 
also include as many GPs as possible to create a represent-
ative sample of the population, but without losing quality 
of data registration. This requires educating GPs about 
how and why to code correctly in their EHRs.

Data integration
For sending the data to the EHR, uniform terminology and 
coding for lab results across all laboratories and EHR software 
programs are imperative, ideally accompanied by a standard-
ized structure for messaging lab results to each software pack-
age. Presently, lab results may not be uniformly integrated 
into every EHR software package in Flanders. However, given 
Intego’s exclusive use of CareConnect software, this discrep-
ancy is of lesser concern for this particular study setup.

Privacy-proof methods of data sharing should be used. 
In Belgium, such a system already exists and was used for 
the sharing of HBM results with the participant’s GP. For 
the extraction of information from EHRs to the Intego 
database, we refer to the Intego protocol paper  [20]. In 
the future, linkage of our integrated dataset to other data-
bases can help improve data quality by adding informa-
tion that is not currently available in Intego, for example 
other environmental factors.

Data analysis
When performing analyses with our data, the incidence 
or prevalence of some endpoints in Intego may be too low 
to allow a valid statistical analysis. We can overcome this 
problem by enlarging the investigated time interval, e.g. 
selection of myocardial infarctions in a period of 5 years 
instead of only 1 year. However, this assumes that the inves-
tigated exposure is an indicator of long-term exposure. 
Additionally, we can also group several endpoints together 
to increase their prevalence or incidence. For example, 
when the count for myocardial infarction is too low, we can 
group it together with other atherosclerotic diseases. This 
way, more outcomes will be detected and analysis becomes 
possible. Obviously, we will be as specific as possible and 
only group endpoints based on clinical relevance. If group-
ing is done, this will be stated clearly in the methods section 
of any future study. An example of grouping can be seen 
in Table 3. In the future, applying this integration method 
to other databases (such as hospital registers) may lead to 
higher prevalence or incidence rates of less common out-
comes. For example, the incidence of cancer is likely greater 
in secondary care institutions than in primary care.
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Interpretation of data analysis
While interpreting the results, several considerations 
merit attention.

First, several general interpretational issues should be 
considered when using this method. For example, certain 
health parameters may exhibit biases. The frequency of 
measuring kidney function (eGFR) might vary among 
patients, for example, potentially skewing the results, 
since patients with renal insufficiency have their eGFR 
measured more frequently. Additionally, there may be 
a slight underestimation of disease prevalence or inci-
dence due to underregistration among GPs. However, 
Intego’s stringent quality criteria for registrars mitigate 
this concern to a considerable extent. These interpreta-
tion challenges can be partially addressed through inter-
nal validation of the models, such as assessing the effects 
of known covariates on outcomes.

Moreover, causal inferences from associations cannot 
be conclusively drawn from a single cross-sectional anal-
ysis. However, the ability for repeated analysis at multi-
ple timepoints can strengthen the evidence for causal 
relationships. As mentioned before, Intego is a dynamic 
cohort, with patients leaving and entering our network 
constantly, meaning that we will lose a certain percent-
age of patients with HBM values in long-term follow-up. 
The exact number we will lose because of this will only 
become clear in future studies. Lastly, the Intego data-
base cannot account for all covariates. Other environ-
mental pollutants or certain lifestyle factors, for example, 
are not coded in EHRs. This can possibly be overcome 
in the future by linkage with other databases. This link-
age can be facilitated by using the “FAIR Environmental 
and Health Registry” or “FAIREHR”, which can provide 
an infrastructure for linking other relevant health and/or 
environmental data to Intego [30].

Conclusion
The integration of HBM data into Intego, a primary care 
morbidity database, required a collaborative effort between 
researchers in the field of HBM, statisticians, and clinical 

researchers of Intego. PFAS serum values were successfully 
integrated into the Intego database, which contains rou-
tinely collected medical data. Our method shows that it is 
feasible to link HBM data to electronic health records.

Although no significant associations were identified in 
the current dataset, the anticipated influx of more PFAS 
data into EHRs holds promise for conducting robust 
analyses in the near future, thereby contributing to the 
body of evidence concerning the health effects of PFAS. 
The new method outlined in this study can be swiftly 
applied to address emerging pollution hotspots, be it for 
PFAS or other pollutants. Furthermore, the possibility of 
long-term follow-up in the Intego database creates new 
opportunities in environmental health research, facilitat-
ing investigations into long-term health effects.
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ATSDR	� Agency for Toxic Substances and Disease Registry
BKMR	� Bayesian Kernel Machine Regression
BMI	� Body mass index
eGFR	� Estimated Glomerular Filtration Rate
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LDL-cholesterol	� Low-density lipoprotein cholesterol
LOD	� Limit of detection
LOQ	� Limit of quantification
PFAS	� Per- and polyfluoroalkyl substances
PFOS	� Perfluorooctane sulfonate
PFOA	� Perfluorooctanoic acid
PFNA	� Perfluorononanoic acid
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PFBA	� Perfluorobutanoic acid
PFPeA	� Perfluoropentanoic acid
PFUnA	� Perfluoroundecanoic acid
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PFHpS	� Perfluoroheptanesulfonic acid
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Table 3  An example of grouping several similar endpoints together in different steps

Disease (ICPC-code) Group 1 Group 2 Group 3

K74: Ischemic heart disease with angina Ischemic heart disease Ischemic cardiovascu-
lar disease

Cardiovascular disease

K75: Acute myocardial infarction
K76: Ischemic heart disease without angina
K89: Temporary cerebral ischemia Ischemic cerebrovascular disease

K90: Stroke
K92: Atherosclerosis/Disease of peripheral arteries Peripheral ischemic disease

K77: Heart failure Heart failure Heart failure
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