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Abstract
Background Bisphenol A (BPA) is widely used in the manufacturing of plastics. BPA can pass the placental barrier and 
influence fetal development. Due to its estrogenic and anti-androgenic properties, BPA may contribute sex-specific 
differences in developmental effects. We examined associations between maternal urinary concentrations of BPA and 
birth size.

Methods In this cohort study of 832 mother-child pairs from the Odense Child Cohort, pregnant women provided 
spot urine samples at gestational week 28, which were analyzed for BPA by isotope diluted LC-MS/MS. Osmolality 
adjusted urinary BPA concentrations were categorized into quartiles. Mother-child characteristics were obtained 
from hospital records and questionnaires. Linear regression analyses examining the association between BPA 
concentrations and offspring birth size (weight, length, head, and abdominal circumference) were performed for the 
full cohort and stratified by offspring sex.

Results BPA was detected above the limit of detection in 85% of the urine samples with a median concentration 
of 1.33 ng/ml. In the full cohort, birth weight decreased significantly across increasing quartiles of maternal urinary 
BPA concentration, with the exception of the third quartile, which showed no significant association. In sex-stratified 
analyses, statistically significant decreases in birth weight were observed among male offspring in the highest quartile 
of maternal urinary BPA concentrations (β: -115 g, 95% CI: − 225, -4, p = 0.04) compared to male offspring of the 
lowest quartile and a possible dose-response association was suggested (p-trend = 0.06). No statistically significant 
associations were observed for birth weight amongst female offspring.

Conclusions Our findings suggest a negative association between maternal urinary BPA exposure and birth weight, 
driven by a lower birth weight in male offspring. Further research is required to explore the underlying mechanisms of 
BPA’s possible sex-specific associations.

Keywords BPA, Odense child cohort, Birth characteristics, Exposure, EDCs, Urine

Maternal urinary concentrations of bisphenol 
A during pregnancy and birth size in children 
from the Odense Child Cohort
Astrid L. Beck1,2† , Elvira V. Bräuner1,2† , Cecilie S. Uldbjerg1,2 , Youn-Hee Lim3,4 , Henriette Boye6 , 
Hanne Frederiksen1,2 , Anna-Maria Andersson1,2  and Tina Kold Jensen1,2,5,6*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0003-3366-9723
http://orcid.org/0000-0001-9183-4796
http://orcid.org/0000-0002-4041-094X
http://orcid.org/0000-0002-1290-5814
http://orcid.org/0000-0002-6290-2478
http://orcid.org/0000-0002-3180-9879
http://orcid.org/0000-0002-7300-1659
http://orcid.org/0000-0003-2311-5778
http://crossmark.crossref.org/dialog/?doi=10.1186/s12940-025-01169-4&domain=pdf&date_stamp=2025-3-31


Page 2 of 9Beck et al. Environmental Health           (2025) 24:15 

Background
Bisphenol A (BPA) is a chemical compound that is used 
in the manufacturing of various forms of plastics. The 
chemical is copiously produced with a 5.3% annual 
growth rate in global demand and is widely applied in 
everyday products, such as packaging, electronics, medi-
cal equipment, and children’s toys [1, 2]. As BPA is widely 
present in domestic products, exposure through various 
sources and routes occur on a daily basis, with evidence 
reporting that BPA was found in the urine of more than 
90% of individuals tested across various countries [3].

BPA can bind to both membrane and nuclear estro-
gen receptors and is a recognized xenoestrogen [4]. 
However, other actions of BPA also include anti-andro-
genic properties [5, 6]. Other than being estrogenic or 
anti-androgenic, BPA has multiple modes of action in 
various biological contexts [7] and during critical devel-
opment windows of the embryo [8, 9] and fetus [10, 11]. 
A transfer between mother and fetus has been reported 
in humans, where traces of BPA have been measured in 
placenta [12], amniotic fluid [13] and fetal cord blood 
[14]. This suggested transfer of BPA during pregnancy is 
concerning, as hormone disturbances during fetal organ 
development may introduce irreversible structural, phys-
iological, and metabolic changes to the fetus [15–18].

Epidemiological literature examining the relation-
ship between maternal BPA exposure and birth size in 
offspring remains inconclusive [19, 20]. Studies investi-
gating the potential impact of sex on these associations 
are moreover limited and report inconsistent findings 
[21–24]. Birth size is considered a crucial marker of 
future health and extreme high or low birth size has been 
associated with increased cardiovascular and metabolo-
mic disease in later life [25–28]. Given these long-term 
implications, elucidating the association between the 
prenatal exposure to BPA and birth size, along with any 
potential sex-effect, could enhance our understanding 
of the impact of BPA on birth size during sensitive fetal 
developmental windows.

Using data from a cohort of healthy pregnant women, 
this study aimed to examine the associations between 
maternal urinary concentrations of BPA and offspring 
birth size outcomes, and whether these associations were 
modified by offspring sex.

Methods
Study population
The study follows a prospective cohort design and is 
based on 832 mother-child pairs from the Odense Child 
Cohort, which has been described prior [29]. Pregnant 
women were enrolled in the cohort at Odense University 
Hospital between 2010 and 2012 during the early stages 
of their gestation (gestational weeks 8–16). Women com-
pleted a questionnaire regarding their general health and 

lifestyle factors and donated a fasting spot urine sample 
during their second trimester in gestational weeks 27 and 
28 (median 28.7 weeks, range 26.4–30.4 weeks). The sam-
ples were subsequently stored at -80 ºC within the Open 
Patient data Explorative Network (OPEN) prior to their 
chemical analysis. Data on maternal age at delivery, pre-
pregnancy BMI, parity, maternal smoking during preg-
nancy, educational status and birth size outcomes were 
obtained from hospital obstetric and pediatric records. 
Ponderal index was calculated as the ratio of birth weight 
divided by birth length cubed (cm3). Gestational age 
(GA) was calculated using the date of the last menstrual 
period and date of birth. Parity and ponderal index (g/
cm3) were included for descriptive purposes only.

Analysis of urinary BPA
Urinary concentrations of BPA were quantified using iso-
tope-diluted Liquid Chromatography with tandem Mass 
Spectrometry (LC-MS/MS) with prior enzymatic decon-
jugation, as previously described [30]. The limit of detec-
tion (LOD) was 0.12 ng/ml. The urinary osmolality of 
each sample was measured by the freezing point depres-
sion method with an automatic cryoscopic osmometer 
(Osmomat ®030 from Gonotec, Berlin, Germany) and 
used to adjust all measured BPA concentrations for the 
osmolality of the sample [30]. Osmolality adjustment was 
calculated for all samples by dividing sample concentra-
tions with sample osmolality and multiply with median 
osmolality (0.63 osm/kg). Chemical analyses were per-
formed in Copenhagen, Denmark at the Department of 
Growth and Reproduction at Copenhagen University 
Hospital – Rigshospitalet and have partly been published 
before [30–32].

Confounders and outcomes
Confounders were identified based on prior knowl-
edge and included maternal age at delivery (< 20, 20–25, 
and > 25 years), and gestational age at birth (number of 
weeks) obtained from hospital records, and self-reported 
maternal BMI (normal weight [< 25  kg/m2], overweight 
[25–34 kg/m2], and obese [> 34 kg/m2]), maternal smok-
ing during gestation (no or yes), maternal education level 
(low: high school or less, middle: high school + 1–4 years, 
high: high school + > 4 years), and parity (nulliparous or 
multiparous). All participating women (N = 832) had 
available confounder information.

Primary outcomes were birth size outcomes obtained 
from hospital records, including birth weight (g) and 
length (cm), and head and abdominal circumference 
(cm). Data on birth weight was available for all offspring 
(Nmales/females: 444/388), 827 had information on birth 
length (Nmales/females: 440/387), 825 had information on 
head circumference (Nmales/females: 439/386), and 821 had 
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information on abdominal circumference (Nmales/females: 
436/385).

Statistical analyses
Descriptive statistics were conducted to summarize dif-
ferences in urinary BPA concentrations, presented as 
medians and interquartile ranges (25–75th percentiles), 
according to maternal characteristics stratified by all off-
spring and child sex assigned at birth. Differences in dis-
tributions of urinary BPA concentrations were assessed 
through Kruskal Wallis tests. Due to BPA concentrations 
not being normally distributed, these were divided into 
quartiles for male and female offspring separately and 
according to proportional group sizes and categorized 
as follows: reference (quartile 1, Q1), low (Q2), medium 
(Q3) and high (Q4). Birth size outcomes were applied in 
the analyses as continuous variables.

Linear regression was applied to estimate the associa-
tion between quartiles of maternal second trimester BPA 
concentrations and birth size outcomes. Models were 
adjusted for confounders including maternal age, BMI, 
smoking and education, gestational age at birth, and par-
ity. Linear dose-response trends across BPA quartiles 
were assessed by means of ordinal BPA quartiles using 
integer values from one to four (p-value for trend). Anal-
yses were performed for all, and separately for male and 
female offspring.

In addition to the sex-stratified regression analyses, we 
included a cross product term (maternal BPA concentra-
tions ∗ offspring sex) to explore potential interactions 
between offspring sex and maternal BPA concentrations. 
However, the interaction term was not statistically sig-
nificant (p-value = 0.22) indicating that concentrations 
of BPA did not differ between sex. However, by exam-
ining potential differences within each sex separately, 
we account for how BPA exposures manifest differently 
between males and females. It has been observed that 
sex-specific biological differences in metabolism and hor-
mone regulation influence how BPA is processed within 
the body [33].

Statistical analyses were performed in SAS Studio 
(2018, SAS Institute Inc., Cary, NC, USA) and R 3‧6‧0 (R 
Foundation for Statistical Computing, Vienna, Austria). 
Specifically, PROC GLM in SAS and the plotrix package 
in R were used for analyses and figures.

Results
Descriptive statistics of the 832 mother-child pairs 
included in the study are presented in Table  1 and the 
maternal urinary BPA concentrations are depicted in 
Table S1 in supplementary material. BPA urinary con-
centrations were detected above LOD in 85% of the urine 
samples (n = 832) with an osmolality adjusted median of 
1.33 ng/ml. The majority of women were between 25 and 

34 years of age, had a normal BMI, and did not smoke. 
Statistically significant differences in BPA concentra-
tions were only observed between nulliparous (median 
1.45 ng/ml) and multiparous women (median 1.23 ng/
ml). When stratified by offspring sex, similar statistically 
significant differences in median concentrations of BPA 
were observed between nulliparous (median 1.44 ng/ml, 
range 0.53; 2.87) and multiparous (median 1.13 ng/ml, 
range 0.54; 1.97) women of female offspring.

The results of the regression analyses including all off-
spring are presented in Fig.  1; Table  2. When consider-
ing the full cohort, no statistically significant trends were 
observed across maternal urinary BPA concentration 
quartiles and birth outcomes. Specifically, offspring in 
the second quartile had a birth weight reduction of 89 g 
(95% CI: -167, -11, p-value = 0.03), and offspring in the 
fourth quartile had a reduction of 92 g (95% CI: -170, -14, 
p-value = 0.02). However, no statistically significant asso-
ciation was observed for the third quartile (β=-51 g, 95% 
CI; -129; 26, p-value = 0.19). No other patterns of associa-
tions were observed for the remaining birth outcomes for 
the full cohort.

The results from the sex-stratified regression models 
are shown in Fig.  1; Table  3. Maternal BPA exposure in 
the highest quartile was associated with a statistically 
significant lower birth weight in males, but not in female 
offspring. Males in the highest BPA concentration quar-
tile had on average a 115 g lower birth weight (95% CI: 
− 225, -4, p-value = 0.04), as opposed to males in the first 
quartile of BPA, including a borderline statistically sig-
nificant p-trend (p = 0.06). We observed no statistically 
significant trends across the other endpoints in male 
offspring. No statistically significant trends in birth out-
comes were observed in female offspring.

Discussion
Utilizing data from 832 mother-child pairs from the 
Odense Child Cohort, the present study observed a 
decreasing birth weight in the full cohort with increas-
ing quartiles of maternal urinary concentrations of BPA 
during pregnancy. However, this association was driven 
by male offspring, as the sex-stratified analyses revealed 
statistically significant associations solely for male birth 
weight, including a potential dose-response pattern, with 
no similar findings observed amongst female offspring.

Concentrations of BPA were detected above LOD in 
the vast majority of collected urine samples (84.6%). Sim-
ilar detection rates of BPA have been reported in preg-
nant populations from China [34], Spain [35], and the 
United States [36], confirming that pregnant women are 
ubiquitously exposed to BPA. Moreover, the median con-
centration of maternal BPA in our cohort was 1.2 ng/ml 
(BPA[osm]: 1.3 ng/ml), which is comparable to other birth 
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cohorts from Europe [22, 37], USA [38], Mexico [39], and 
Puerto Rico [40].

Our overall findings are consistent with those of three 
previous epidemiological studies [41–43]. Yet, other 
studies have conveyed positive associations between con-
centrations of BPA measured during pregnancy and birth 
size [23, 44]. In line with our findings from the stratified 
analyses, a Danish study of 88 pregnant women similarly 
observed that urinary concentrations of BPA were signifi-
cantly associated with reduced birth weight in males, but 
not in females [22]. However, sex-stratified results across 
studies remain inconsistent. Although the interaction 
analysis in the present study did not reveal significant 
results, we performed sex-stratified analyses to further 

explore potential differences. In contrast, a Chinese case-
control study of 452 pregnant women exhibiting higher 
median BPA concentrations (cases, 4.7 ng/ml, controls, 
2.2 ng/ml) observed a higher risk of lower birth weight in 
female offspring and not male offspring [42]. It is unclear 
why studies observe effects that differ across outcomes 
for male and female offspring. However, this discrepancy 
may be attributed to random variation.

BPA is known to mimic endogenous estrogen by bind-
ing to estrogen receptors due to sharing a structural 
similarity to natural estrogens. This interference can dis-
rupt the normal functioning of endogenous estrogens 
which play a key part in the development and growth 
of the embryo through cell proliferation [7]. Since the 

Table 1 Median (25–75th percentile) of maternal osmolality adjusted urinary BPA according to maternal and child characteristics in 
832 mother-child pairs
Maternal and child characteristics Bisphenol A (ng/ml(osma))

All offspring, N = 832 Male offspring, n = 444 Female offspring, n = 388

N (%) [ng/ml(osma)] N (%) [ng/ml(osma)] N (%) [ng/ml(osma)]
Maternal age (years)
 < 25 73 (8.8) 1.46 (0.59; 2.41) 42 (9.5) 1.46 (0.64; 2.52) 31 (8.0) 1.50 (0.42; 2.33)
 25–34 562 (67.6) 1.30 (0.55; 2.44) 294 (66.2) 1.38 (0.53; 2.37) 268 (69.1) 1.24 (0.56; 2.45)
 > 34 197 (23.7) 1.41 (0.50; 2.39) 108 (24.3) 1.41 (0.55; 2.36) 89 (22.9) 1.39 (0.45; 2.43)
Maternal pre-pregnancy BMIb(kg/m2)
 <20 87 (10.5) 1.33 (0.35; 1.95) 47 (10.6) 1.10 (0.35; 1.96) 40 (10.3) 1.49 (0.44; 1.98)
 20–25 432 (51.9) 1.28 (0.52; 2.38) 226 (50.9) 1.31 (0.50; 2.32) 206 (53.1) 1.19 (0.52; 2.51)
 > 25 313 (37.6) 1.45 (0.64; 2.51) 171 (38.5) 1.53 (0.68; 2.60) 142 (36.6) 1.34 (0.61; 2.38)
Maternal smoking during pregnancy
 No 804 (96.6) 1.32 (0.53; 2.38) 427 (96.2) 1.40 (0.53; 2.38) 377 (97.2) 1.26 (0.53; 2.38)
 Yes 28 (3.4) 1.42 (0.76; 2.82) 17 (3.8) 1.21 (0.81; 2.73) 11 (2.8) 2.28 (0.22; 2.91)
Educational status
 High school or less 236 (28.4) 1.48 (0.57; 2.51) 136 (30.6) 1.55 (0.57; 2.53) 100 (25.8) 1.41 (0.57; 2.51)
 High school + 1–4 years 431 (51.8) 1.26 (0.56; 2.38) 229 (51.6) 1.28 (0.50; 2.40) 202 (52.1) 1.19 (0.61; 2.38)
 High School + > 4 years 165 (19.8) 1.30 (0.42; 2.24) 79 (17.8) 1.40 (0.62; 2.01) 86 (22.2) 1.29 (0.26; 2.38)
Parity
 Nulliparous 472 (56.7) 1.45 (0.55; 2.64)* 256 (48.4) 1.46 (0.56; 2.52) 216 (55.7) 1.44 (0.53; 2.87)*
 Multiparous 360 (43.3) 1.23 (0.53; 2.12)* 188 (42.3) 1.29 (0.53; 2.22) 172 (44.3) 1.13 (0.54; 1.97)*
Gestational days at birth
 Preterm (< 259) 33 (3.9) 1.13 (0.62; 2.00) 17 (2.10) 1.31 (0.89; 1.87) 16 (1.90) 1.00 (0.55; 2.20)
 Term (≥ 259) 799 (94.9) 1.33 (0.53; 2.43) 427 (50.7) 1.40 (0.53; 2.41) 372 (44.2) 1.28 (0.52; 2.44)
Sex
 Male 444 (53.4) 1.39 (0.55; 2.39) 444 (100.0) 1.39 (0.55; 2.39) na na
 Female 388 (46.6) 1.28 (0.53; 2.43) na na 388 (100.0) 1.28 (0.53; 2.43)
Birth weight (g)
 < 3000 124 (53.4) 1.29 (0.64; 2.13) 52 (11.7) 1.55 (0.86; 2.25) 72 (18.6) 1.14 (0.57; 2.03)
 3000–4000 555 (66.7) 1.40 (0.54; 2.66) 293 (66.0) 1.43 (0.47; 2.66) 262 (67.5) 1.31 (0.58; 2.64)
 > 4000 153 (18.4) 1.18 (0.39; 2.12) 99 (22.3) 1.20 (0.53; 2.11) 54 (13.9) 1.08 (0.08; 2.21)
Ponderal Index (g/cm3)
 < 2.2 83 (10.0) 1.02 (0.61; 2.00) 46 (10.4) 1.08 (0.68; 1.95) 37 (9.5) 0.92 (0.42; 2.00)
 2.2-3.0 731 (87.9) 1.39 (0.55; 2.47) 388 (87.4) 1.42 (0.54; 2.46) 343 (88.4) 1.31 (0.55; 2.51)
 > 3.0 18 (2.2) 1.21 (0.08; 1.43) 10 (2.3) 1.21 (0.18; 1.43) 18 (2.2) 0.74 (0.08; 2.13)
aOsm: osmolality
bBMI: body-mass index

*p < 0.05, Kruskal Wallis test
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expression of estrogen receptors is different between 
the two sexes, it can be postulated that this variation in 
receptor expression may explain why some studies report 
differing effects. Timing of BPA exposure may also be a 
factor, as a study examining the relationship between 
BPA and estrogens across trimesters found mothers car-
rying male fetuses were more sensitive to estradiol in 
early pregnancy, while mothers carrying female fetuses 
were more responsive to estriol in mid-pregnancy [45]. 
Lastly, the differences detected in Asian versus Cauca-
sian populations may be due to genetic or dietary differ-
ences, although this remains speculative given the lack of 
genetic and dietary information. The overall ambiguity in 
findings across studies is moreover supported by two sys-
tematic reviews, which suggest that the of lack of homog-
enous data, limited number of studies, and the biological 
complexity of BPA contribute to their mixed results [19, 
20].

Notably, the association observed for birth weight for 
the full cohort appeared to be driven by male offspring, 
as these findings were only consistent for males in the 
sex-stratified analyses, whereas no associations were 
observed for female offspring. In our study, the observed 
impact on birth weight in males may be due to BPA’s anti-
androgenic ability, which involves inhibiting androgen 

receptor signaling [5, 6]. The difference in birth weight 
between male offspring in the lowest quartile and high-
est quartile of maternal BPA concentrations observed in 
our study corresponds to the average difference in birth 
weight between female and male offspring (110–150  g). 
This weight difference is often attributed to andro-
gen activity, as individuals with a 46 XY karyotype and 
a complete androgen insensitivity tend to have birth 
weight comparable to that of females [46]. Given this, it 
is plausible that BPA may exert anti-androgenic effects 
by disrupting androgen activity leading to a lower birth 
weight in male offspring. A study assessing the effect of 
various doses of BPA in human placentas observed that 
1 µM of BPA significantly increased the expression of the 
estrogen-related receptor gamma in female placentas, 
while decreasing its expression in male placentas, indi-
cating that BPA can influence gene expression in human 
placentas differently across the sexes and be anti-estro-
genic for male fetuses, potentially affecting important 
developmental processes [47]. BPA’s anti-androgenic and 
anti-estrogenic properties may also explain the observed 
decrease in birth length for male offspring in the highest 
quartile of maternal BPA concentrations, however, this 
remains unclear and requires further research to fully 
elucidate the specific mechanisms involved. A strength 

Fig. 1 Linear regression models estimating the overall and sex-stratified association between quartiles of maternal BPA concentrations and birth size 
outcomes
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of the current study is the inclusion of a large study 
population from a Danish cohort with exhaustive infor-
mation on mother-child characteristics. Urine samples 
enabled the quantification of BPA in urine, which is the 
favored matrix for measuring short half-life compounds 
such as BPA due to their rapid metabolism and excre-
tion (approximately 6  h) [48]. Of note, a previous study 
reported that maternal urinary concentrations of BPA 
are strongly correlated with concentrations found in pla-
centas and neonatal urine [49], thus supporting maternal 
urine concentrations as a proxy of the fetal exposure.

Participation bias may be a potential issue as only 
43% of the eligible pregnant women participated in the 
cohort. We moreover acknowledge that the included 
pregnant women may not fully represent the background 
population of women giving birth and residing in the 
recruitment area of the Odense Child Cohort at that 
time [29]. However, as participants were unbeknownst of 
their bisphenol exposure and the aim of the study was to 
compare exposure across BPA concentrations, the moth-
ers’ representativeness of the background population is 
less critical. A limitation is that we only utilized single 
spot urine samples collected during gestational week 28, 
which can only provide a snapshot in time of maternal 
BPA exposure, and due to the intra-individual variation 
in BPA urine excretion [50] the current study inhabits a 
potential risk of exposure misclassification. It is impor-
tant to note that exposure misclassification can obscure 
the true dose-response relationship, potentially explain-
ing the non-linear patterns observed in females. Further, 
pregnant women are exposed to a multitude of different 
chemicals and other compounds, which can result in 
additive and synergistic effects. Our findings are limited 
to the individual effect of BPA only, and therefore stud-
ies incorporating the cocktail effects of BPA and other 
chemicals are required.

Furthermore, although we accounted for several appro-
priate covariates in our adjusted analyses, we cannot 
eliminate the possibility of residual confounding due to 
the absence of data on additional relevant factors. Given 
that gestational age is a well-established determinant of 
birth weight, we also investigated it as an outcome and 
whether it might mediate the observed association. How-
ever, both analyses yielded non-significant results (data 
not shown). These findings are consistent with a meta-
analysis that found no significant associations between 
BPA and gestational age [51]. However, other studies 
have reported significant associations [34, 40].

Conclusions
Our findings suggest decreases in birth weight with 
increasing maternal urinary BPA concentration, includ-
ing a potential dose-response pattern, solely in male 
offspring but not female offspring, suggesting that male Ta
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offspring may be the primary drivers behind the asso-
ciation. The modes of action of BPA include estrogenic, 
anti-estrogenic and anti-androgenic mechanisms, which 
may explain the potential sex-specific effect of BPA on 
birth outcomes. However, the endocrine-related activi-
ties of BPA are multivarious and complex, thus the mech-
anism behind the observed associations in the present 
study remain to be elucidated.
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