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Background
Visceral leishmaniasis (VL), also known as kala-azar, is 
a vector-borne disease caused by intracellular protozoa 
from the genus Leishmania [1, 2]. The parasite is typically 
transmitted through the bite of an infected female sand-
fly [3]. Leishmania requires a host to ensure its survival, 
typically an animal such as dogs or rodents (common 
reservoirs), while humans act as accidental hosts [4, 5]. 
In symptomatic infections, the most common signs and 
clinical manifestations include prolonged fever, weak-
ness, night sweats, anorexia, weight loss, pallor, lymph-
adenopathy, hepatomegaly, and splenomegaly [6, 7]. If 
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Abstract
Background Visceral leishmaniasis is a neglected life-threatening sandfly-borne disease, which brings a growing 
public health threat in Central China around the Taihang Mountains. However, the spatiotemporal dynamics of 
visceral leishmaniasis in the local community and the potential driving factors remain poorly understood.

Methods We analyzed the spatiotemporal patterns of new reported visceral leishmaniasis cases in the region from 
2006 to 2023, and combined random forest modeling approach with environmental covariates to identify the main 
influencing factors related to transmission risk of the disease.

Results Our results show that there was a total number of 800 reported human visceral leishmaniasis cases, affecting 
29 cities, and 113 counties across the region, exhibiting a geographic expansion of the disease during this period, 
especially in Shanxi province. Two high-risk clusters were identified in the study. Environmental change-related 
factors, including standardized precipitation deviation, forest cumulative change ratio, and normalized difference 
vegetation index (NDVI) cumulative change, played important roles in increasing the transmission risk of visceral 
leishmaniasis, with their relative contributions summing up to 66.17%.

Environmental change increases the 
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in central China around the Taihang 
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left untreated, VL may cause multisystem disease, and 
result in secondary infections and death [7, 8]. Among 
parasitic diseases, VL has the second-highest mortality 
rate, surpassed only by malaria [9, 10]. In addition, it is 
widespread across all continents except Oceania, with 
approximately 500,000 new cases reported annually [2, 9, 
11].

In China, previous studies suggest that the earliest 
cases of VL appeared in the 1880s [12, 13], while the 
first parasitologically confirmed case of VL in China was 
reported in 1904, involving a German soldier [13–15]. 
Following this, more cases were reported across vari-
ous regions, including the provinces of Jiangsu, Shan-
dong, Hebei, Hunan, Shanxi, Shaanxi, Gansu, Xinjiang, 
Sichuan, Jiangxi, and Liaoning [13, 14, 16, 17]. After the 
establishment of the People’s Republic of China in 1949, 
widespread interventions such as diagnosis and chemo-
therapy of patients, identification, isolation, and disposal 
of infected dogs, and residual insecticide indoor spraying 
for vector control were implemented to control VL, lead-
ing to a gradual decline in cases [1]. For example, there 
were approximately 530,000 cases of VL in 1951, and the 
disease had nearly disappeared from the plains north of 
the Yangtze River by 1958 [18, 19]. However, by the late 
1980s, the implementation of the “Western Development 
Strategy” created favorable habitats for the transmission 
of VL, leading to a resurgence and outbreak of the disease 
in western and central China [20]. Between 2004 and 
2016, the majority of cases were reported in Xinjiang, 
Gansu, and Sichuan, accounting for more than 90% of all 
cases reported nationwide [21, 22].

In recent years, there has been an upward trend in VL 
cases in Central China [23, 24], posing a growing public 
health threat around the Taihang Mountains. However, 
the spatiotemporal dynamics of VL in the local com-
munity and the potential driving factors remain poorly 
understood. To address this gap, we conducted a spatio-
temporal analysis of VL cases reported between 2006 and 
2023, aiming to identify underlying drivers and offer new 
insights for disease prevention and control.

Materials and methods
Study area
The study area is geographically situated between lati-
tudes 32°N and 42°N, and longitudes 112°E and 118°E, 
encompassing four major regions surrounding the Tai-
hang Mountain Range: Beijing, Hebei, Shanxi, and 
Henan (Fig.  1). The Taihang Mountains extend in a 

north-northeast to south-southwest direction, serving as 
a natural divider between the North China Plain to the 
east and the Loess Plateau to the west. The terrain varies 
significantly, with elevations ranging from − 4 to 2,919 m 
and an average elevation of 636.28 m. The annual mean 
temperature ranges from 10.64  °C to 12.16  °C, while 
annual precipitation varies from 326.74 to 885.76  mm 
[25]. Socioeconomically, all four regions (Beijing, Hebei, 
Shanxi, and Henan) had Gross Domestic Product exceed-
ing 2.5 trillion Chinese Yuan (CNY) in 2023 [26–29].

Human VL cases
In this study, human VL case data from 2006 to 2023 were 
obtained from the Chinese Center for Disease Control 
and Prevention (China CDC) and analyzed. A total of 800 
cases were confirmed through clinical diagnosis and lab-
oratory testing, while suspected VL cases were excluded 
from this study due to their inherent uncertainty.

Terrain factor
The sandfly, the primary vector of VL, is widely distrib-
uted in mountainous regions [30, 31], and previous study 
has shown that topography is a significant factor influ-
encing sandfly distribution [32]. In this study, elevation 
was chosen as a topographical variable that may affect 
the presence of VL [23]. Elevation data with a spatial 
resolution of 90 m were obtained from the Consultative 
Group on International Agricultural Research Consor-
tium for Spatial Information [33]. The elevation dataset 
was then processed and aggregated from the grid level to 
the county level using ArcGIS 10.8.

Environmental factors
Climate change influences vector-borne diseases in mul-
tiple ways, with numerous studies demonstrating the 
significant impact of climatic variables on parasitic and 
zoonotic diseases [34, 35]. For example, temperature 
affects the development, reproduction, and lifespan of 
sandflies [36, 37], while precipitation influences the dis-
tribution and abundance of sandfly populations [37, 38]. 
Moreover, changes in temperature condition and precipi-
tation pattern may alter breeding sites, which are essen-
tial for the survival and proliferation of sandflies [39, 40]. 
The climate data utilized in this study include surface 
precipitation rates and 2-meter mean air temperatures, 
which were available from the ERA-5 reanalysis of histor-
ical observations at a daily temporal resolution on a reg-
ular 0.25° × 0.25° grid [25]. Based on these datasets, we 

Conclusions Our findings provide a better understanding of the spatiotemporal dynamics and driving factors of 
visceral leishmaniasis recurrence across Central China around the Taihang Mountains, which underscore prevention 
and control measures should be taken immediately to reduce the risk.
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generated annual mean temperature and annual precipi-
tation for the years 1970 to 2023. Then we used data from 
1970 to 2005 as the baseline to calculate the standardized 
temperature deviation and the standardized precipita-
tion deviation for 2006 to 2023. The detailed information 
about generating long-term climate change index can be 
found elsewhere [41, 42].

Ecological environments have a significant impact on 
vector-borne diseases, with changes in land cover types 
notably affecting VL [43–45]. On one hand, the abun-
dance of sandflies varies across different land cover types, 
with some studies indicating higher infection rates in 
forested areas [46, 47]. On the other hand, the expansion 
of human activity areas increases exposure risks, con-
tributing to a higher risk of VL [46]. We used the Annual 
International Geosphere-Biosphere Programme (IGBP) 
classification from the MCD12Q1 Version 6 data product 
for reclassification. Using 2005 land cover data as a base-
line, we calculated the cumulative change in the propor-
tions of forest, cropland, and urban areas for each county 
to explore the long-term impact of land cover type 
changes on the number of VL cases [48]. Additionally, 
some studies have shown that the Normalized Differ-
ence Vegetation Index (NDVI) is a key factor influencing 
sandfly distribution [49, 50]. Therefore, we used NDVI 
data from the MOD13A1 Version 6.1 product, with a 
spatial resolution of 500 m and 16-day intervals. We syn-
thesized the maximum NDVI values for each year and 
extracted them at the county level. Similarly, using 2005 
as the baseline, we calculated NDVI cumulative change 
over time to assess the long-term impact of vegetation 
changes on the number of VL cases [51].

Socioeconomic factors
Previous studies have shown the relevance of socioeco-
nomic factors to the transmission of VL [9, 52–54]. For 
VL, low-income people show a greater susceptibility, 
which may be due to poor sanitation and inadequate 
nutrition [9, 54]. Additionally, some studies have found 
that population size is associated with the transmission 
of VL [24, 55]. We used population distribution data with 
a spatial resolution of 1  km from the LandScan data-
base (https://landscan.ornl.gov/) to calculate the annual 
population for each county. To reduce data skewness, we 
applied a logarithmic transformation to the population 
data. Gross Domestic Product (GDP) data were sourced 
from Scientific Data [56].

Space-time cluster approach
Space-time cluster analysis was conducted using SaTScan 
10.2.4 (64-bit version) to identify high-risk and low-risk 
clusters of VL cases. The maximum spatial cluster size 
was set at 50% of the population. To enhance the statis-
tical power of our analysis, we performed 999 standard 

Monte Carlo simulations. Clusters with a p-value of less 
than 0.05 were considered statistically significant in our 
study.

Random forest
The models were developed and evaluated using the 
64-bit R version 4.4.1. In the R statistical programming 
environment, we utilized the randomForest and caret 
packages for analysis. The randomForest package was 
used to build the random forest model, while the caret 
package was used for model training and evaluation, 
including cross-validation.

In the present study, we calculated the annual total 
number of VL cases for each county using unique county 
codes and spatially matched these data with relevant 
driving factors. Data processing was conducted using 
Python version 3.8. To model the relationship between 
VL cases and various environmental and demographic 
factors, we first divided the dataset into records with 
cases (cases > 0) and those without cases (cases = 0). Since 
the number of non-case records was significantly higher, 
we randomly sampled an equal number of non-case 
records to balance the dataset. This process was repeated 
50 times to capture potential variability in the random 
sampling. In each iteration, the balanced dataset was 
shuffled. We used the balanced data to build the random 
forest model and applied 5-fold cross-validation using 
the caret package. The cross-validation was stratified by 
the year of case occurrence to ensure temporal consis-
tency across the folds.

Results
Spatiotemporal distribution of VL cases
We mapped the spatiotemporal distribution of clini-
cally and laboratory-confirmed VL cases at the county 
level from 2006 to 2023 in the four regions near the 
Taihang Mountains (Fig. 2). The earliest case of VL was 
reported in March 2006 in western Shanxi province. In 
2007, three cases were reported across two counties in 
Henan province. In 2008 and 2009, Shanxi reported one 
case each year, while two cases were reported there in 
2010. Between 2011 and 2014, the total number of cases 
reported annually across the four major regions did not 
exceed 10, with 5, 2, 7, and 5 cases, respectively. During 
this period, Beijing reported its first case in 2013, fol-
lowed by Hebei province in 2014. Since 2015, the num-
ber of cases has gradually increased, and by 2020, the 
total number of cases reported across the four regions 
exceeded 100 for the first time. Overall, during the period 
from 2006 to 2023, Shanxi province has consistently 
accounted for the majority of the total cases among the 
four regions (586 cases), followed by Henan (129 cases), 
Hebei (71 cases), and Beijing (14 cases). These cases are 
predominantly concentrated in the central and western 

https://landscan.ornl.gov/
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Fig. 1 Study Area: Regions Surrounding the Taihang Mountains. The study area encompasses Beijing (16 districts, covering 16,000 square kilometers with 
a population of 22 million), Hebei province (11 cities, 167 districts, covering 188,800 square kilometers with a population of 74 million), Shanxi province 
(11 cities, 117 districts, covering 156,700 square kilometers with a population of 35 million), and Henan province (17 cities, 136 districts, covering 167,000 
square kilometers with a population of 98 million)
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areas of these regions, and both the geographic range and 
number of VL cases have expanded over time (Figs. 2 and 
3).

The monthly variation of VL cases across the four 
regions was also analyzed. Although there has been a sig-
nificant increase in cases each year, no specific seasonal 
or monthly patterns have been observed (Fig. 3).

Space-time clustering analysis
The spatiotemporal scanning analysis identified two sig-
nificant high-risk clusters of VL cases. The first main 
cluster was located in Pingding county, Yangquan city 
in the eastern part of Shanxi province, with coordinates 
at 37.84 N and 113.75 E, covering a radius of 55.21 km, 
for the period from 2017 to 2023. This cluster included 
16 districts and counties in the eastern region of Shanxi 

province and the western region of Hebei province. Dur-
ing the study period, this area reported 395 cases against 
an expected count of 3.24, demonstrating significant 
spatiotemporal aggregation with a relative risk (RR) 
of 239.59. The log-likelihood ratio (LLR) was 1622.84 
(P < 0.001). Another notable high-risk cluster was located 
in Yuanqu county, Yuncheng city in the southern part 
of Shanxi province, centered at coordinates 35.21 N and 
111.81 E, with a larger radius of 211.75 km, for the period 
from 2020 to 2023. This cluster encompassed a broader 
area, including 130 districts and counties in the south-
ern part of Shanxi province and the northeastern part of 
Henan province, with a total of 239 observed cases com-
pared to an expected 39.95. The RR for this cluster was 
8.10, with an LLR of 257.17, demonstrating significant 
spatiotemporal aggregation (P < 0.01) (Fig.  4; Table  1). 

Fig. 2 Spatial Distribution of VL Cases from 2006 to 2023
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Additionally, three low-risk clusters were also identi-
fied, with specific details provided in the Supplementary 
Materials (Figure S1 and Table S1).

Driving factors of VL recurrence
The performance of the random forest model was evalu-
ated through a process of repeated random sampling, 
where 50 iterations were conducted to create a balanced 
dataset by combining cases with non-cases, followed by 
training the model and assessing its predictive accuracy. 
The average correlation coefficient (R) from five-fold 
cross-validation was 0.577, indicating that the model 
demonstrated applicability in capturing the relationship 
between the predicted and observed values. The random 
forest model was employed to assess the influence of vari-
ous environmental and demographic factors on VL cases. 
The normalized importance of each variable was calcu-
lated as a percentage, reflecting the relative contributions 

of each factor to the model’s predictive performance. 
Among the variables, standardized precipitation devia-
tion emerges as the most significant predictor, account-
ing for 17.95% of the total explained variation. This is 
followed by elevation (14.22%), forest cumulative change 
ratio (12.29%), NDVI cumulative change (11.15%), and 
the log of population (11.00%). Standardized tempera-
ture deviation (9.43%) and GDP (8.61%) also contribute 
notably, whereas urban cumulative change ratio (7.82%) 
and crop cumulative change ratio (7.54%) have the low-
est contributions. Despite this, they still play meaning-
ful roles in the overall model. In addition, the results 
further underscore the dominant role of environmental 
factors, which collectively account for 66.17% of the total 
explained variation. This is followed by socioeconomic 
factors (19.61%) and terrain factors (14.22%) (Table 2).

The increase in the standardized deviations of precipi-
tation and temperature has contributed to the rise in VL 

Fig. 3 Monthly Variation of VL Cases across four regions from 2006 to 2023
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Fig. 4 The two significant high-risk clusters identified by SaTScan in the study area
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cases. Elevation exhibits a dual effect: it promotes an 
increase in cases at elevations below 800 m, but acts as a 
deterrent beyond this threshold. The cumulative change 
in forest area ratio and NDVI are positively correlated 
with the number of cases. Initially, increases in urban 
cumulative change ratio and GDP suppress the growth 
of cases, but eventually, they contribute to a rise in case 
numbers. The cumulative change in cropland ratio also 
shows a similar nonlinear trend. However, unlike urban 
cumulative change ratio and GDP, when the horizon-
tal axis is less than 0, it indicates a decrease in cropland. 
Both cropland reduction and expansion are associated 
with an increase in VL cases, suggesting that changes in 

cropland, regardless of the direction, lead to an increase 
in the number of cases (Fig. 5).

Discussion
This study analyzed the spatiotemporal distribution of 
VL case numbers at the county level in the four major 
regions surrounding the Taihang Mountains—Beijing, 
Hebei, Henan, and Shanxi—from 2006 to 2023. A space-
time cluster analysis was conducted using SaTScan, 
which identified two high-risk clusters associated with 
case aggregation events. The analysis provided the coor-
dinates, time windows, case counts, relative risks, and 
coverage areas of these clusters. The two time windows 
began in 2017 and 2020, respectively, and continued until 
2023. The persistent high-risk spatiotemporal clustering 
of VL in the region warrants attention.

Previous studies frequently relied on multi-year aver-
aged variables for modeling, assuming static ecological 
niches and neglecting the impacts of dynamic changes in 
driving factors [57, 58]. In contrast, our study incorpo-
rated NDVI cumulative change, standardized deviations 
in temperature and precipitation, and cumulative change 
in the area proportion of different land cover types into 
the modeling process. By capturing long-term variations, 
we highlighted the temporal dynamics of driving factors 
and emphasized the significant influence of environmen-
tal changes on the recurrence and transmission of VL 
over time. The results from our random forest model fur-
ther confirm the dominant role of environmental factors, 
collectively explaining 66.17% of the variation. Notably, 

Table 1 High-risk Spatiotemporal clustering of the reported human VL cases from 2006 to 2023
Cluster Longitude Latitude Time window Number of cases Relative Risk The log-likelihood ratio
Cluster A 113.75 37.84 2017–2023 395 239.59 1622.84
Cluster B 111.81 35.21 2020–2023 239 8.10 257.17

Table 2 Normalized importance of each variable (%IncMSE)
Variables Normalized importance
Terrain factors† 14.22%
Elevation 14.22%
Environmental factors† 66.17%
Standardized precipitation deviation 17.95%
Forest cumulative change ratio 12.29%
NDVI cumulative change 11.15%
Standardized temperature deviation 9.43%
Urban cumulative change ratio 7.82%
Crop cumulative change ratio 7.54%
Socioeconomic factors† 19.61%
Log of Population 11.00%
GDP 8.61%
Note: †Sum of relative contribution for each category.

Fig. 5 The partial dependence plot of each variable. The partial dependence plots isolate the effects of eight feature variables on the predicted number 
of VL cases. The X-axis represents the range of values for each feature, while the Y-axis shows the model’s average predicted value for VL cases. The blue 
curve represents the average predicted values after 50 iterations, and the shaded area indicates the 95% confidence interval for the predictions over these 
iterations. The red and green line segments represent the range of feature variable values within different clusters, with red indicating high-risk clusters 
and green indicating low-risk clusters. These ranges are calculated based on the annual average values of variables across all counties within each cluster
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the standardized deviation of precipitation emerged as 
the most influential variable, followed by elevation, for-
est cumulative change, and NDVI cumulative change. 
These findings underscore that long-term environmen-
tal changes, including changes in climate factors, NDVI, 
and land cover, are pivotal in driving the recurrence and 
transmission of VL in the Taihang Mountain region.

Among these factors, the standardized deviation of 
precipitation explained 17.95% of the variability in the 
random forest model, making it the most significant fac-
tor influencing VL cases. This factor demonstrated a pos-
itive correlation with the number of VL cases. Previous 
studies have typically used average precipitation and tem-
perature [57, 58], while standardized deviations of pre-
cipitation and temperature better capture the long-term 
trends in precipitation and temperature changes within 
a region’s time series [59]. Additionally, positive precipi-
tation deviations may create more potential habitats for 
sandflies, the main vectors of VL, thereby increasing the 
risk of disease transmission [38]. It can be observed that 
high-risk clusters in the central and western parts of the 
region exhibit greater standardized precipitation devia-
tions compared to low-risk clusters (Figs. 4 and 5; Figure 
S1). This distinct difference has influenced the spatial 
distribution of VL case clusters. The standardized tem-
perature deviations explained 9.43% of the variability. 
Unlike standardized precipitation deviations, standard-
ized temperature deviations do not significantly influ-
ence VL cases when the deviation is less than 1. Only 
standardized temperature deviations exceeding 1 show 
a significant positive correlation, suggesting that rapid 
temperature increases significantly promote disease 
transmission. Higher temperatures accelerate the meta-
bolic rate of sandflies, shortening their lifecycle from egg 
laying to adulthood, thereby potentially increasing the 
rate of VL transmission [36]. In addition, several stud-
ies suggested that northern China, including the Taihang 
Mountain region, would experience significant increases 
in precipitation [60], and annual mean temperatures are 
expected to rise by 2.66 °C by mid-century and by 5.62 °C 
by the end of the 21st century [61]. Thus, the combined 
effects of increased precipitation and rising temperatures 
due to climate change may further elevate the risk of VL 
and expand its endemic areas.

Compared to the previously used NDVI values and 
land cover type area proportions, we utilized cumula-
tive changes in NDVI and in the area proportion of dif-
ferent land cover types [57, 58]. NDVI cumulative change 
is positively correlated with VL cases. Its increase often 
indicates that vegetation is becoming denser, which may 
provide more favorable habitats and richer food sources 
for sandflies [50, 62]. Regarding different land cover types 
area proportion cumulative change, an increase in for-
est ratio may create ideal breeding grounds for sandflies 

[44, 46]. Interestingly, we found that the impact of urban 
change rate on VL exhibits a U-shaped non-linear pat-
tern in this study. This pattern is consistent with findings 
from previous research suggesting a link between urban 
development and VL transmission [63, 64]. Improve-
ments in medical infrastructure, sanitation, and disease 
control measures associated with urbanization may ini-
tially reduce VL transmission risk [53, 65]. However, as 
urbanization progresses and cities expand into rural or 
forested areas, human exposure to sandfly habitats may 
rise, potentially elevating the risk of transmission [66]. In 
China, land cover changes are primarily driven by poli-
cies such as afforestation and urban expansion [67]. In 
VL endemic areas, integrating land use planning with 
public health measures is essential for balancing develop-
ment goals and disease control efforts.

Our study identified elevation as a key factor influ-
encing the transmission of VL, in addition to environ-
mental variables. Elevation accounted for 14.22% of the 
variation, with a positive correlation observed at altitudes 
below 800  m. This trend may result from the complex 
terrain in hilly regions, which provides favorable ecologi-
cal niches for sandflies [32, 68, 69]. However, at altitudes 
above 800  m, VL cases declined, likely due to environ-
mental limitations. These findings are consistent with 
research from high-altitude areas in southern Spain and 
Henan province, which documented reduced sandfly 
density and diversity at higher elevations, possibly due to 
shorter activity periods and less suitable habitats [32, 69, 
70]. Nonetheless, isolated reports of sandfly populations 
thriving above 1,300  m indicate that specific microcli-
mates or adaptive mechanisms may enable their survival 
[32, 68]. In VL-prone regions, targeted monitoring and 
control measures should focus on hilly and mountainous 
areas to address the risk of sandfly-borne transmission.

This study has several limitations. Due to data con-
straints, our research did not incorporate molecular 
identification of specific causative parasites (Leishmania 
spp.) or conduct field surveys on sandfly vectors (Phlebo-
tomus spp.) and reservoir hosts (e.g., dogs and rodents) 
[1]. Information on these biological factors is essential for 
fully understanding the ecological dynamics and trans-
mission mechanisms of visceral leishmaniasis. Therefore, 
future studies could include molecular analyses of para-
sites and entomological surveys to enable more precise 
risk assessment and effective disease control strategies.

Conclusion
In the past two decades, VL has re-emerged and spread 
across the regions surrounding the Taihang Mountains, 
including Beijing, Hebei, Henan, and Shanxi, posing 
a significant public health challenge. Based on China 
CDC reports from 2006 to 2023, our study revealed a 
rapid increase in VL cases in recent years. Long-term 
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environmental changes, including standardized devia-
tions in temperature and precipitation, cumulative 
changes in NDVI, and cumulative changes in land cover 
proportions (such as forest, cropland, and urban areas), 
have contributed to an increased risk of VL transmission. 
Additionally, socioeconomic factors, such as popula-
tion density and GDP, have played a role in the disease’s 
transmission. These findings underscore the importance 
of integrating environmental monitoring, land use plan-
ning, and public health strategies to effectively manage 
VL risks and protect vulnerable populations.
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